主管:中国科学院
主办:中国优选法统筹法与经济数学研究会
   中国科学院科技战略咨询研究院

中国管理科学 ›› 2025, Vol. 33 ›› Issue (1): 209-220.doi: 10.16381/j.cnki.issn1003-207x.2024.0483cstr: 32146.14.j.cnki.issn1003-207x.2024.0483

• • 上一篇    下一篇

基于在线评论的消费者偏好挖掘研究综述

蒲中敏1, 张晨曦2, 徐泽水1()   

  1. 1.四川大学商学院,四川 成都 610064
    2.澳门城市大学国际旅游与管理学院,澳门特别行政区 999078
  • 收稿日期:2024-03-28 修回日期:2024-05-30 出版日期:2025-01-25 发布日期:2025-02-14
  • 通讯作者: 徐泽水 E-mail:xuzeshui@263.net
  • 基金资助:
    国家自然科学基金项目(72271173)

A Review of Consumer Preference Mining Based on Online Reviews

Zhongmin Pu1, Chenxi Zhang2, Zeshui Xu1()   

  1. 1.Business School,Sichuan University,Chengdu 610064,China
    2.Faculty of International Tourism and Management,City University of Macau,Macau 999078,China
  • Received:2024-03-28 Revised:2024-05-30 Online:2025-01-25 Published:2025-02-14
  • Contact: Zeshui Xu E-mail:xuzeshui@263.net

摘要:

在线评论反映了消费者对产品不同特征的偏好,挖掘其中的偏好信息可以帮助潜在消费者更好地了解产品,从而做出更明智的购买决策,同时,也能够为企业的产品改进、市场定位以及营销策略提供重要支撑。近年来学者围绕在线评论挖掘消费者偏好进行了广泛研究,但目前缺乏系统性的文献综述。因此,本研究采用文献计量和内容分析相结合的方法对该领域的现状、不足和未来研究趋势进行综述。首先,定量分析了相关文献发表情况和关键词聚类情况,依据在线评论偏好挖掘的处理层次,将其归纳为基于在线评论的消费者偏好识别、分析、应用三大研究主题,构建了系统性的研究框架。然后,对每个研究主题的具体内容,从现状和不足两个层面进行了全面分析。最后,从提升消费者偏好识别准确性、深入分析个性化偏好和动态偏好、拓展偏好应用领域、推动多模态信息融合四方面提出了未来研究展望。

关键词: 在线评论, 消费者偏好, 评论挖掘, 偏好分析, 产品改进

Abstract:

Online reviews reflect customers’preferences for various product features. Mining this preference information can help potential consumers better understand the products, leading to more informed purchasing decisions, while also providing valuable insights for product improvement, market positioning and promotional strategies. In recent years, scholars have conducted extensive research on the mining of customer preferences from online reviews, but there is a lack of systematic literature review in this field. To systematically understand the current status, limitations, and future research trends, a literature review is conducted using bibliometric analysis and content analysis. Initially, the publication of relevant literature and keyword clustering are quantitatively analyzed. Based on the process of mining consumer preferences from online reviews, this literature is scrutinized and categorized into three research themes: identification, analysis, and application of customer preferences derived from online reviews, thereby constructing a systematic research framework. Subsequently, a comprehensive analysis of each theme is conducted from both current status and limitations. Finally, future research trends are proposed, focusing on enhancing the accuracy of customer preference identification, exploring personalized and dynamic preferences, expanding the application domains of preferences and promoting the integration of multimodal information.

Key words: online reviews, customer preferences, review mining, preference analysis, product improvement

中图分类号: