中国管理科学 ›› 2025, Vol. 33 ›› Issue (1): 247-258.doi: 10.16381/j.cnki.issn1003-207x.2024.1678cstr: 32146.14.j.cnki.issn1003-207x.2024.1678
收稿日期:
2024-09-20
修回日期:
2024-11-13
出版日期:
2025-01-25
发布日期:
2025-02-14
通讯作者:
马铁驹
E-mail:tjma@sjtu.edu.cn
基金资助:
Received:
2024-09-20
Revised:
2024-11-13
Online:
2025-01-25
Published:
2025-02-14
Contact:
Tieju Ma
E-mail:tjma@sjtu.edu.cn
摘要:
随着风光发电装机容量的快速提升,其消纳问题已成为影响能源结构低碳转型目标实现的关键,同时,学界也围绕消纳机制与消纳方案等议题展开了广泛研究。本研究采取文献计量与主题分析相结合的方法,系统梳理了该领域研究的演化历程与发展趋势。在此基础上,探讨当前存在的不足与未来发展方向。首先,基于关键词突现分析和共现时序分析,识别了不同阶段的研究热点并探究其演变特征。其次,分五个时间切片进行主题建模,明晰关键研究主题的演化路径。最后,对风光电力消纳体系的主要模块进行专题分析,指明当前研究的不足之处与前沿问题,其中基于电-碳-证三市场协同的新环境、基于深度学习等人工智能算法的新方法、基于工业耦合的新模式等有望成为未来风光电力消纳研究的突破点。研究结果为后续研究提供了方向指引,同时也为风光电力消纳问题的疏解提供了经验借鉴与理论支撑。
中图分类号:
刘风, 马铁驹. 风光电力消纳机制与方案研究现状及前沿展望[J]. 中国管理科学, 2025, 33(1): 247-258.
Feng Liu, Tieju Ma. Review and Frontier Prospect of the Researches on the Mechanisms and Strategies of Wind and Solar Power Consumption[J]. Chinese Journal of Management Science, 2025, 33(1): 247-258.
1 | 衣博文,范英.高比例可再生能源接入下的电力系统规划研究[J].管理科学学报,2023,26(10):21-35. |
Yi B W, Fan Y. Power system planning with a high share of renewable energy[J]. Journal of Management Science and Engineering, 2023, 26(10): 21-35. | |
2 | 国家能源局. 新能源发电装机规模首超煤电[EB/OL].[2024-8-20]. . |
National Energy Administration. The installation capacity of renewable power surpasses coal power[EB/OL].[2024-8-20]. . | |
3 | 中国电力年鉴编辑委员会.2023中国电力年鉴[M].北京:中国电力出版社, 2024. |
Editorial committee of China electric power yearbook. 2023 China electric power yearbook[M]. Beijing: China Electric Power Press, 2024. | |
4 | 朱庆缘,陈希凡,陈杰,等.中国区域电力企业可再生能源电力配额分配机制研究[J].中国管理科学,2024,32(9):292-302. |
Zhu Q Y, Chen F X, Chen J, et al. Renewables quota allocation among regional power industries under the policy of renewable electricity standard[J]. Chinese Journal of Management Science, 2024, 32(9): 292-302. | |
5 | 戴道明,王忆都.可再生能源消纳责任权重制下光伏供应链合作与运营决策[J].中国管理科学,2024,DOI:10.16381/j.cnki.issn1003-207x.2023.1019 . |
Dai D M, Wang Y D. Photovoltaic supply chain cooperation and operational decision under renewable portfolio standard[J]. Chinese Journal of Management Science, 2024.DOI:10.16381/j.cnki.issn1003-207x.2023.1019 . | |
6 | 李宏舟,何礼飞,李姝.可再生能源视阈下“三改联动”政策的成本成因与定量测度——基于CGE模型的分析[J].系统工程理论与实践,2024,44(11):3501-3519. |
Li H Z, He L F, Li Z. The cost causes and quantitative measurements of the “triple reform” policy under the perspectives of renewable energy:A CGE model analysis[J]. Systems Engineering-Theory & Practice,2024,44(11):3501-3519. | |
7 | Jia L, Liu F, Li Z, et al. Grid-side flexibility of power systems in integrating large-scale renewable generations: A critical review on concepts, formulations and solution approaches[J] Renewable and Sustainable Energy Reviews, 2018, 93: 272-284. |
8 | Shao H, Henriques R, Morais H, et al. Power quality monitoring in electric grid integrating offshore wind energy: A review[J]. Renewable and Sustainable Energy Reviews, 2024, 191: 114094. |
9 | Hache E, Palle A. Renewable energy source integration into power networks, research trends and policy implications: A bibliometric and research actors survey analysis[J]. Energy Policy, 2019, 124: 23-35. |
10 | 蒲中敏,张晨曦,徐泽水.基于在线评论的消费者偏好挖掘研究综述[J].中国管理科学,2024,DOI:10.16381/j.cnki.issn1003-207x.2024.0483 . |
Pu Z M, Zhang C X, Xu Z S. A review of consumer preference mining based on online reviews[J]. Chinese Journal of Management Science, 2024,DOI:10.16381/j.cnki.issn1003-207x.2024.0483 . | |
11 | 梁斐然,王利平.组织制度分析——基于主题建模的研究述评与展望[J].软科学,2024,38(2):134-144. |
Liang F R, Wang L P. A literature review on topic modeling for organizational institutionalism[J]. Soft Science, 2024, 38(2): 134-144. | |
12 | 杨思洛,于永浩.基于BERTopic模型的国内信息资源管理研究主题挖掘与演化分析[J/OL].情报科学.. |
Yang S L, Yu Y H. Topic mining and evolution analysis of information resource management research based on BERTopic model[J/OL]. Information Science.. | |
13 | Chen C. CitesSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature[J]. Journal of American Society for Information Science and Technology, 2006, 57(3): 359-377. |
14 | Grootendorst M. BERTopic: Neural topic modeling with a class based TF IDF procedure[J]. Arxiv Preprint Arxiv,2022,DOI:104855/arxiv.2203.05794 . |
15 | Song J, Zhang H, Dong W. A review of emerging trends in global PPP research: Analysis and visualization[J]. Scientometrics, 2016, 107: 1111-1147. |
16 | Ji Z, Pei Y.(2019). Bibliographic and visualized analysis of geopolymer research and its application in heavy metal immobilization: A review[J]. Journal of Environmental Management, 2019, 231: 256-267. |
17 | 何郁冰,徐美娟,荆晶.基于创新采用框架的颠覆性技术识别研究[J].科学学研究,2024,DOI:10.16192/j.cnki.1003-2053.20240220.004 . |
He Y B, Xu M J, Jing J. Research on the identification of disruptive technologies based on innovation adoption[J]. Studies in Science of Science,2024,DOI:10.16192/j.cnki.1003-2053.20240220.004 . | |
18 | Gladysz B, Tran T, Romero D, et al. Current development on the operator 4.0 and transition towards the operator 5.0: A systematic literature review in light of Industry 5.0[J]. Journal of Manufacturing Systems, 2023, 70: 160-185. |
19 | 刘洋,柳卓心,金昊,等.基于BERTopic模型的用户层次化需求及动机分析——以抖音平台为例[J].情报杂志,2023,42(12):159-167. |
Liu Y, Liu Z X, Jin H, et al. User hierarchical need and motivation analysis based on BERTopic model: Taking douyin platform as an example[J]. Journal Of Intelligence, 2023, 42(12): 159-167. | |
20 | 张涛, 马海群.中国人工智能政策主题热点及演进分析[J].现代情报, 2021, 41(11): 150-160. |
Zhang T, Ma H Q. Hot topics and evolution analysis of China’s artificial intelligence policy[J]. Journal of Modern Information, 2021, 41(11): 150-160. | |
21 | Zipp A. The marketability of variable renewable energy in liberalized electricity markets-an empirical analysis[J]. Renewable Energy, 2017,113: 1111-1121. |
22 | 王风云.可再生能源定价机制研究评述[J].价格理论与实践,2017(8):52-55. |
Wang F Y. A review on the pricing mechanism of renewable energy[J]. Price Theory & Practice, 2017 (8): 52-55. | |
23 | Gomes I, Pousinho H, Melicio R, et al. Stochastic coordination of joint wind and photovoltaic systems with energy storage in day-ahead market[J]. Energy, 2017,124: 310-320. |
24 | 宋鹏,陈光明,尹梦蕾,等.电力行业可再生能源补贴与全国碳市场协同减排效应[J].中国人口·资源与环境,2023,33(7):81-93. |
Song P, Chen G M, Yin M L, et al. Synergistic emission reduction effects of China’s national carbon market and renewable energy subsidies in the power industry[J]. China Population, Resources and Environment,2023, 33(7): 81-93. | |
25 | 唐葆君,李茹,王翔宇,等.中国碳市场与电力市场联动机制与协同效应[J].北京理工大学学报(社会科学版), 2023, 25(6): 25-33. |
Tang B J, Li R, Wang X Y, et al. Linkage mechanism and synergistic effect of China’s carbon market and electricity market[J]. Journal of Beijing Institute of Technology (Social Science Edition), 2023, 25(6): 25-33. | |
26 | 商波.可再生能源发电与售电企业绿证配额交易的激励机制研究[J].运筹与管理,2024,33(1):165-171. |
Shang B. Incentive mechanism of tradable renewable portfolio standard using green certificates between renewable energy power generators and sellers[J]. Operations Research and Management Science, 2024,33(1): 165-171. | |
27 | 许书琴,徐琪.能源平台供应链可再生能源电力消纳激励契约研究[J].中国管理科学,2024,DOI:10.16381/j.cnki.issn1003-207x.2022.1461 . |
Xu S Q, Xu Q. Incentive contract of renewable energy power consumption in energy platform supply chain[J]. Chinese Journal of Management Science, 2024,DOI:10.16381/j.cnki.issn1003-207x.2022.1461 . | |
28 | 严冬,张凯.智能电网建设推动低碳经济发展[J].中国软科学,2010(S2):99-104. |
Yan D, Zhang K. Analysis and construction of smart grid on promote a low carbon economy[J]. China Soft Science, 2010(S2): 99-104. | |
29 | 刘秋华,陈洁.我国智能电网社会效益评价[J].生态经济,2012(4):127-129. |
Liu Q H, Chen J. The social benefits evaluation of smart grid in China[J]. Ecological Economy, 2012(4): 127-129. | |
30 | Lahimer A, Alghoul M, Yousif F, et al. Research and development aspects on decentralized electrification options for rural household[J]. Renewable and Sustainable Energy Reviews, 2013, 24: 314-324. |
31 | Gabra S, Miles J, Scott S. Techno-economic analysis of stand-alone wind micro-grids, compared with PV and diesel in Africa[J]. Renewable Energy, 2019, 143: 1928-1938. |
32 | 周继儒,李军祥,何建佳,等.基于区块链的微网与大电网合作博弈研究[J].系统工程理论与实践,2021,41(8):2090-2100. |
Zhou J R, Li J X, He J J, et al. Cooperation game between microgrid and bulk power grid on blockchain[J]. Systems Engineering-Theory & Practice,2021,41(8): 2090-2100. | |
33 | 周剑,聂孝婷,庞可欣,等.基于深度强化学习算法的跨区域多微电网系统扩展规划研究[J].中国管理科学,2024,DOI:10.16381/j.cnki.issn1003-207x.2023.1947 . |
Zhou J, Nie X T, Pang K X, et al. Multi-area multi-microgrid system expansion planning based on deep reinforcement learning algorithm[J]. Chinese Journal of Management Science, 2024,DOI:10.16381/j.cnki.issn1003-207x.2023.1947 . | |
34 | 陈晓红,王泽深,吴超,等.基于长短期记忆网络的微电网分时负荷组合预测模型研究[J].中国管理科学,2024,DOI:10.16381/j.cnki.issn1003-207x.2023.1574 . |
Chen X H, Wang Z S, Wu C, et al. Research on short-term integrated forecasting model of hour-based load in micro-grid based on long-short-term memory network[J]. Chinese Journal of Management Science, 2024,DOI:10.16381/j.cnki.issn1003-207x.2023.1574 . | |
35 | 屈德强,李军祥,王溪.基于博弈解析的智能电网实时定价策略[J/OL].系统工程理论与实践. . |
Qu D Q, Li J X, Wang X. Real-time pricing strategy for smart grid via game approach of mathematical analysis[J/OL]. Systems Engineering-Theory & Practice.. | |
36 | 朱泽怡,高岩,丁晓东.基于需求侧管理的智能电网两种时段集成定价策略[J].中国管理科学,2024,DOI:10.16381/j.cnki.issn1003-207x.2023.1540 . |
Zhu Z Y, Gao Y, Ding X D. Integrated pricing strategy based on demand side management via two kinds of time slots[J]. Chinese Journal of Management Science, 2024,DOI:10.16381/j.cnki.issn1003-207x.2023.1540 . | |
37 | Cappers P, Mills A, Goldman C, et al. An assessment of the role mass market demand response could play in contributing to the management of variable generation integration issues[J]. Energy Policy, 2012, 48: 420-429. |
38 | Gils H. Assessment of the theoretical demand response potential in europe[J]. Energy, 2014, 67: 1-18. |
39 | Okur Ö, Voulis N, Heijnen P, et al. Aggregator-mediated demand response: Minimizing imbalances caused by uncertainty of solar generation[J]. Applied Energy, 2019, 247: 426-437. |
40 | 叶泽,吴永飞,张新华,等.需求响应下解决交叉补贴的阶梯电价方案研究——基于社会福利最大化视角[J].中国管理科学,2019,27(4):149-159. |
Ye Z, Wu Y F, Zhang X H, et al. Research on the inclining block tariffs scheme for solving cross-subsidy under demand response:Based on the perspective of maximizing social welfare[J]. Chinese Journal of Management Science, 2019, 27(4): 149-159. | |
41 | 代业明,孙锡连,李陆,等.基于多层博弈的智能电网住宅电力实时需求响应机制[J].运筹与管理,2021,30(10):11-17. |
Dai Y M, Sun X L, Li L, et al. Residential electricity real-time demand response mechanism based on multi-level fame in smart grid[J]. Operation Research and Management Science, 2021, 30(10): 11-17. | |
42 | 王兆华,刘杰,王博,等.融合机器学习与SHAP值算法的居民需求响应个体异质性因素挖掘与应用研究[J].系统工程理论与实践,2024,44(7):2247-2259. |
Wang Z H, Liu J, Wang Bo, et al. Research on mining and applications of individual heterogeneity factors in resident demand response by integrating machine learning and SHAP value algorithm[J]. Systems Engineering-Theory & Practice, 2024, 44(7): 2247-2259. | |
43 | 李军祥,陈鸣,邵馨平.基于信息间隙决策理论的虚拟电厂低碳需求响应调度模型[J].中国管理科学,2023,DOI:10.16381/j.cnki.issn1003-207x.2022.2161 . |
Li J X, Chen M, Shao X P. A low-carbon demand response dispatch model for virtual power plants based on information gap decision theory[J]. Chinese Journal of Management Science, 2023,DOI:10.16381/j.cnki.issn1003-207x.2022.2161 . | |
44 | 解百臣,章露,郝鹏.基于主从博弈的虚拟电厂实时定价需求响应机制研究[J].中国管理科学,2024,32(12):312-322. |
Xie B C, Zhang L, Hao P. Real-time pricing demand response mechanism of virtual power plant based on stackelberg game[J]. Chinese Journal of Management Science, 2024,32(12):312-322. | |
45 | Hewitt N. Heat pumps and energy storage-The challenges of implementation[J]. Applied Energy, 2012, 89(1): 37-44. |
46 | Zakeri B, Syri S. Electrical energy storage systems: A comparative life cycle cost analysis[J]. Renewable and Sustainable Energy Reviews, 2015, 42: 569-596. |
47 | Lai C, McCulloch M. Levelized cost of electricity for solar photovoltaic and electrical energy storage[J]. Applied Energy, 2017, 190: 191-203. |
48 | 刘健,孙心玥,戴卓妮,等.考虑市场影响的风电厂与储能运营商联合调度策略研究[J].管理工程学报,2024,38(2):206-220. |
Liu J, Sun X Y, Dai Z N, et al. Implication of market impact on co-optimization scheduling policy for electricity merchants with energy storage and wind farms[J]. Journal of Industrial Engineering and Engineering Management, 2024, 38(2): 206-220. | |
49 | 宋明珍,马腾,孔令丞,等.动力电池梯次利用下风力发电企业储能电站租赁策略选择:容量计费还是两部制收费?[J].中国管理科学,2024,DOI:10.16381/j.cnki.issn1003-207x.2022.2752 . |
Song M Z, Ma T, Kong L C, et al. Under cascade utilization of power battery the lease strategy selection of energy storage power station in wind power enterprises: Capacity charging or two-part charging?[J]. Chinese Journal of Management Science, 2024,DOI:10.16381/j.cnki.issn1003-207x.2022.2752 . | |
50 | 李涛,马裕泽,宋志成,等.考虑电-热储能协同的综合能源系统规划优化研究[J].运筹与管理,2024,33(2):9-16. |
Li T, Ma Y Z, Song Z C, et al. Study on integrated energy system planning optimization considering electric-thermal energy storage synergy[J]. Operation Research and Management Science, 2024,33(2): 9-16. | |
51 | Macedo S, Peyerl D. Prospects and economic feasibility analysis of wind and solar photovoltaic hybrid systems for hydrogen production and storage: A case study of the brazilian electric power sector[J]. International Journal of Hydrogen Energy, 2022, 47(19): 10460-10473. |
52 | Ferrada F, Babonneau F, Homem-de-Mello T, et al. The role of hydrogen for deep decarbonization of energy systems: A Chilean case study[J]. Energy Policy, 2023, 177: 113536. |
53 | Li C, Zhang L, Wang Q, et al. Towards low-carbon steel: System dynamics simulation of policies impact on green hydrogen steelmaking in China and the European Union[J]. Energy Policy, 2024, 188: 114073. |
54 | Kirchem D, Schill W. Power sector effects of green hydrogen production in Germany[J]. Energy Policy, 2023, 182: 113738. |
55 | Frew B, Sergi B, Denholm P, et al. The curtailment paradox in the transition to high solar power systems[J]. Joule,2021, 5(5): 1143-1167. |
[1] | 李陆苗,周鹏,李整军,刘嘉赓. 考虑分时电价与光伏出力关系的分布式光伏投资决策研究[J]. 中国管理科学, 2024, 32(5): 179-186. |
[2] | 陶莎, 俞俊英, 陈世伟, 王徽华. 面向复杂海上环境的风电工程多级供应集成优化研究[J]. 中国管理科学, 2024, 32(12): 323-334. |
[3] | 张剑,何爽,师璞杰,张菊亮. 替代竞争情境下考虑期初库存水平和存储能力约束的多周期订货博弈问题研究[J]. 中国管理科学, 2024, 32(1): 319-324. |
[4] | 陈威,田永乐,马永开,白春光. 可再生能源储能租赁模式对电力质量和电价决策的影响[J]. 中国管理科学, 2024, 32(1): 309-318. |
[5] | 陈浩然, 赵晓丽. 考虑分布式光伏发电的电动汽车充电策略研究[J]. 中国管理科学, 2023, 31(4): 161-170. |
[6] | 殷辉, 陆信辉, 周开乐,. 分布式与集中式储能并存的微电网负荷优化调度[J]. 中国管理科学, 2023, 31(2): 118-128. |
[7] | 刘雪飞, 张奇, 李彦, 余乐安, 王歌. 普惠金融支持光伏发电发展的空间效应研究[J]. 中国管理科学, 2021, 29(8): 24-34. |
[8] | 刘琳, 杨文茵, 黄琳华. 新能源风电技术人才成长最优路径研究[J]. 中国管理科学, 2020, 28(8): 221-230. |
[9] | 黄守军, 余波, 张宗益. 基于实物期权的分布式风电站投资策略研究[J]. 中国管理科学, 2017, 25(9): 97-106. |
[10] | 嵇灵, 牛东晓, 汪鹏. 基于相似日聚类和贝叶斯神经网络的光伏发电功率预测研究[J]. 中国管理科学, 2015, 23(3): 118-122. |
[11] | 黄守军, 任玉珑, 孙睿, 俞集辉. 双寡头电力市场垂直合作减排的随机微分对策模型[J]. 中国管理科学, 2014, 22(2): 101-111. |
[12] | 陈志松, 王慧敏, 马平. 多晶硅光伏供应链的竞争、合作与协调[J]. 中国管理科学, 2011, 19(1): 55-61. |
[13] | 钟渝, 刘名武, 马永开. 基于实物期权的光伏并网发电项目成本补偿策略研究[J]. 中国管理科学, 2010, 18(3): 68-74. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|