主管:中国科学院
主办:中国优选法统筹法与经济数学研究会
   中国科学院科技战略咨询研究院

中国管理科学 ›› 2025, Vol. 33 ›› Issue (9): 201-212.doi: 10.16381/j.cnki.issn1003-207x.2023.0230

• • 上一篇    下一篇

多粒度语言环境下基于持续学习和行为建模的个性化语义共识决策模型

李聪聪1, 梁海明2, 董玉成2,3()   

  1. 1.西南交通大学经济管理学院,四川 成都 610031
    2.四川大学商学院,四川 成都 610065
    3.湘江实验室,湖南 长沙 410205
  • 收稿日期:2023-02-13 修回日期:2023-03-28 出版日期:2025-09-25 发布日期:2025-09-29
  • 通讯作者: 董玉成 E-mail:ycdong@scu.edu.cn
  • 基金资助:
    国家自然科学基金项目(72271171);国家自然科学基金项目(71971149);四川省自然科学基金项目(2022NSFSC0941);中国博士后科学基金项目(2021T140570);中国博士后科学基金项目(2020M673283)

Personalized Individual Semantic with Continuous Learning and Behavior Modeling to Support Consensus Reaching in Multi-granular Linguistic Environment

Congcong Li1, Haiming Liang2, Yucheng Dong2,3()   

  1. 1.School of Economics and Management,Southwest Jiaotong University,Chengdu 610031,China
    2.Business School,Sichuan University,Chengdu 610065,China
    3.Xiangjiang Laboratory,Changsha 410205,China
  • Received:2023-02-13 Revised:2023-03-28 Online:2025-09-25 Published:2025-09-29
  • Contact: Yucheng Dong E-mail:ycdong@scu.edu.cn

摘要:

多粒度语言表征与词义复杂性问题是词计算与语言决策领域关注的焦点,本文研究多粒度语言环境下个性化语义持续学习与行为建模,用于支持群体共识决策。首先,结合个体语义容易受到决策环境和其他决策者偏好的影响而动态改变的特点,构建了共识决策问题中基于前景理论的行为模型和持续学习的个性化语义模型。然后,采用基于多粒度语言偏好关系的共识测量方法,并设计共识反馈调整规则,用于支持多粒度语言环境下群体共识过程。最后,通过数值与仿真分析来展示模型的运算过程,并讨论了动态个性化语义、损失规避等决策行为对群体共识演化的影响。研究结果通过融入持续学习与行为建模,进一步完善个性化语义与共识决策模型。

关键词: 多粒度语言决策, 持续学习, 前景理论, 个性化语义, 共识

Abstract:

Along with the rapid development of Internet technology and the rise of new social media, the pattern of group decision making has been changed profoundly, and it often occurs in a linguistic context. The multi-granular linguistic representations and semantics complexity have been the focuses in computing with words and linguistic decision-making. The personalized individual semantics (PISs) model with continuous learning and behavior modeling is proposed to support group consensus decision-making under multi-granular linguistic environment. Firstly, it is considered that the PISs of decision makers will be affected by the decision-making environment and decision-makers' preferences, so it will be changing dynamically during the consensus reaching process. Thus, a PISs model of behavior modeling and continuous learning based on prospect theory has been proposed. Then, the consensus measurement and feedback recommendation based on PISs under multi-granular linguistic context are developed to support the consensus process. Finally, numerical and simulation analysis are presented to illustrate the use of the proposed model, and to show the influences of the decision-making behaviors (e.g., dynamic PISs, loss aversion) on the evolution of group consensus. The research results in this paper show that the PISs and consensus decision-making model can be improved by integrating continuous learning and behavior modeling.

Key words: multi-granular linguistic decision making, continuous learning, prospect theory, personalized individual semantics, consensus

中图分类号: