主管:中国科学院
主办:中国优选法统筹法与经济数学研究会
   中国科学院科技战略咨询研究院

中国管理科学 ›› 2025, Vol. 33 ›› Issue (6): 346-359.doi: 10.16381/j.cnki.issn1003-207x.2022.1025

• • 上一篇    

基于动态社会网络的能源转型路径评估多属性群决策建模研究

缑迅杰, 徐鑫茹, 徐泽水()   

  1. 四川大学商学院,四川 成都 610065
  • 收稿日期:2022-05-10 修回日期:2022-10-05 出版日期:2025-06-25 发布日期:2025-07-04
  • 通讯作者: 徐泽水 E-mail:xuzeshui@263.net
  • 基金资助:
    国家自然科学基金项目(72071135);国家社会科学基金后期项目(24FGLB072);教育部人文社会科学研究规划基金项目(24YJA630024);四川大学建设世界一流大学经费项目(2021CXC21)

Research on Multi-attribute Group Decision-making Modeling of Energy Transition Path Evaluation Based on Dynamic Social Network

Xunjie Gou, Xinru Xu, Zeshui Xu()   

  1. Business School,Sichuan University,Chengdu 610065,China
  • Received:2022-05-10 Revised:2022-10-05 Online:2025-06-25 Published:2025-07-04
  • Contact: Zeshui Xu E-mail:xuzeshui@263.net

摘要:

“双碳”目标是我国在当前发展阶段的新目标和新要求,同时,促进全社会的能源转型是实现“双碳”目标的必然选择。针对能源转型路径评估及选择问题,本文构建了一种复杂认知语言环境下基于动态社会网络和公众大数据属性挖掘的多属性群体共识决策模型。首先,构建了基于双层语言术语的社会网络信任关系,并提出了依托动态社会网络信任关系确定专家权重的方法,专家动态信任关系受共识迭代过程中其共识度的影响。其次,利用自然语言处理技术挖掘和处理社交平台中的公众行为偏好大数据,并以此建立能源转型路径评估决策问题的评价属性体系,随后提出了一种融合社会网络信任关系的群体共识模型,以此促进专家间的共识达成。最后,本文将所提出的方法和模型应用于“双碳”目标下能源转型路径评估的实际决策问题中,并评估出“绿色电气化高增长转型路径”为我国能源转型的最优路径。随后,通过多方面的对比分析和模拟仿真分析,突出本研究在解决实际决策问题中的有效性和实用性,并给出了该领域的启示和建议。

关键词: 动态社会网络, 信任传播方程, TF-IDF算法, 群体共识, 能源转型路径评估

Abstract:

The goal of “carbon peaking and carbon neutral” is a new goal and requirement for China in the new development stage, and promoting the green energy transition of the whole society is an inevitable choice to achieve the goal. The evaluation and selection of energy transition paths involves a comprehensive quantitative evaluation of different energy transition paths, but this evaluation method faces the challenges of multi-dimensional variables, multi-structure coupling and multi-level structure. Aiming at the evaluation and selection of energy transition path, a multi-attribute group consensus decision-making model is constructed based on dynamic social network and public big data attribute mining in a complex cognitive language environment. First, a social network trust relationship based on double hierarchy linguistic terms is constructed, and a method for determining experts’ weights based on dynamic social network trust relationships is proposed, the dynamic trust relationships of experts are affected by their degree of consensus during a consensus iteration. Secondly, natural language processing technology is used to mine and process big data of public behavior preferences in social platforms to establish an evaluation attribute system, then a group consensus model based on the trust reward and punishment mechanism and integrating the trust relationship of social networks is proposed to promote consensus among experts. Finally, the proposed method and model are applied to the actual decision-making problem of energy transition path assessment. Among them, the green electrification high-growth transformation path scored the highest, with 0.7301, is chosen as the optimal energy transition path. Subsequently, a comparative analysis is conducted in many aspects, and simulation analysis is also carried out. The effectiveness and practicability of this research in solving the energy transition path assessment are highlighted and enlightenment and suggestions in this field are given.

Key words: dynamic social network, trust propagation equation, TF-IDF algorithm, group consensus, energy transition path assessment

中图分类号: