中国管理科学 ›› 2025, Vol. 33 ›› Issue (5): 124-137.doi: 10.16381/j.cnki.issn1003-207x.2024.1770cstr: 32146.14/j.cnki.issn1003-207x.2024.1770
收稿日期:
2024-09-30
修回日期:
2024-12-03
出版日期:
2025-05-25
发布日期:
2025-06-04
通讯作者:
吕欣
E-mail:xin.lu.lab@outlook.com
基金资助:
Suoyi Tan1, Mengning Wang1, Ye Tian2, Jianguo Liu3, Xin Lu1()
Received:
2024-09-30
Revised:
2024-12-03
Online:
2025-05-25
Published:
2025-06-04
Contact:
Xin Lu
E-mail:xin.lu.lab@outlook.com
摘要:
贫困是指个体或群体无法获得满足基本生活需求的资源和服务,长期以来一直是全球关注的重大社会问题。传统的贫困识别和测量方法主要依赖于统计数据和抽样调查,存在成本高、效率低、时效性差和数据匮乏等局限性,难以及时反映动态的社会经济状况。随着数字化时代的来临,人口、地理和经济等领域的数据资源日益丰富,为运用人工智能与大数据技术深入研究贫困问题提供了新的契机。本文对贫困的关键概念和测量指标进行了系统回顾,重点探讨了数据驱动的模型和算法在绘制贫困地图、预测贫困趋势和评估社会经济发展状况等方面的应用。在此基础上,进一步讨论了大数据和人工智能技术在实现减贫目标上的潜在影响和机遇,如更精细的空间分析、实时监测能力和趋势预测,同时,也指出了数据可代表性、数据质量和模型可解释性等关键挑战,以及未来可能的发展方向。
中图分类号:
谭索怡, 王梦宁, 田野, 刘建国, 吕欣. 数据驱动的贫困识别、分类与预测方法研究[J]. 中国管理科学, 2025, 33(5): 124-137.
Suoyi Tan, Mengning Wang, Ye Tian, Jianguo Liu, Xin Lu. Data-Driven Models and Applications on Poverty Identification, Classification, and Prediction[J]. Chinese Journal of Management Science, 2025, 33(5): 124-137.
1 | 汪三贵. 在发展中战胜贫困——对中国30年大规模减贫经验的总结与评价[J]. 管理世界, 2008(11): 78-88. |
Wang S G. Overcoming poverty in development: A summary and evaluation of China’s 30 years of experience in large-scale poverty reduction[J]. Journal of Management World, 2008(11): 78-88. | |
2 | 习近平. 携手消除贫困 促进共同发展[N].人民日报, 2015-10-17(2). |
Xi J P. Work together to eliminate poverty and promote common development[N].People’s Daily 2015-10-17(2). | |
3 | Department of Economic and Social Affairs. The sustainable development goals report 2023: Special edition [R]. Working Paper, United Nations, 2023. |
4 | 李玉恒, 武文豪, 宋传垚, 等. 世界贫困的时空演化格局及关键问题研究[J]. 中国科学院院刊, 2019, 34(1): 42-50. |
Li Y H, Wu W H, Song C Y, et al. Spatial-temporal pattern of world poverty reduction and key problems analysis[J]. Bulletin of the Chinese Academy of Sciences, 2019, 34(1): 42-50. | |
5 | 易成栋, 樊正德, 刘小奇, 等. 全球减贫成效的变化趋势与影响因素研究[J]. 中国人口科学, 2021(6): 12-26+126. |
Yi C D, Fan Z D, Liu X Q, et al. Research on changing trends and influencing factors of global poverty reduction effectiveness[J]. Chinese Journal of Population Science, 2021(6): 12-26+126. | |
6 | 中华人民共和国国务院新闻办公室. 《人类减贫的中国实践》白皮书[EB/OL]. (2021-04-06)[2024-09-30]. . |
The State Council Information Office of the People's Republic of China. White Paper: Poverty Alleviation: China's Experience and Contribution[EB/OL]. (2021-04-06)[2024-09-30]. . | |
7 | 叶兴庆, 殷浩栋. 从消除绝对贫困到缓解相对贫困:中国减贫历程与2020年后的减贫战略[J]. 改革, 2019(12): 5-15. |
Ye X Q, Yin H D. From eliminating absolute poverty to alleviating relative poverty:China’s history of poverty reduction and poverty reduction strategies after 2020 [J] Reform, 2019(12): 5-15. | |
8 | 王小林, 张晓颖. 中国消除绝对贫困的经验解释与2020年后相对贫困治理取向[J]. 中国农村经济, 2021(2): 2-18. |
Wang X L, Zhang X Y. An explanation of China’s experience in eliminating absolute poverty and the orientation of relative poverty governance in the post-2020 era[J]. Chinese Rural Economy, 2021(2): 2-18. | |
9 | United Nations Development Programme. 2023 global multidimensional poverty index (MPI)[R]. Working Paper, United Nations Development Programme,2013. |
10 | Ibrahim M, Alola A A, Ferreira D. Assessing sustainable development goals attainment through energy-environmental efficiency: The case of Latin American and Caribbean countries [J]. Sustainable Energy Technologies and Assessments, 2023, 57: 103219. |
11 | Galal S. Number of people living in extreme poverty in Africa 2016-2030[EB/OL](2025-01-27) [2025-05-18].. |
12 | Guerriero C, Haines A, Pagano M. Health and sustainability in post-pandemic economic policies[J]. Nature Sustainability, 2020, 3(7): 494-6. |
13 | Laborde D, Martin W, Swinnen J, et al. COVID-19 risks to global food security[J]. Science, 2020, 369(6503): 500-502. |
14 | Ge Y, Liu M, Hu S, et al. Who and which regions are at high risk of returning to poverty during the COVID-19 pandemic?[J]. Humanities and Social Sciences Communications, 2022, 9(1): 183. |
15 | Brady D. Poverty, not the poor[J]. Science Advances, 2023, 9(34): eadg1469. |
16 | Ravallion M, Chen S H. Welfare-consistent global poverty measures[R].Working Paper, National bureau of economic research, 2017. |
17 | Ferreira F H, Ravallion M. Global poverty and inequality: A review of the evidence [R]. Working Paper, The World Bank,2008. |
18 | Cobham A. Benefits and costs of the IFF targets for the Post-2015 development agenda[M]//Lomborg B. Prioritizing Development: A Cost Benefit Analysis of the United Nations' Sustainable Development Goals. Cambridge: Cambridge University Press,2018: 171-191. |
19 | Serajuddin U, Uematsu H, Wieser C, et al. Data deprivation: Another deprivation to end[R]. Working Paper,The world Bank, 2015. |
20 | Blumenstock J, Cadamuro G, On R. Predicting poverty and wealth from mobile phone metadata[J]. Science, 2015, 350(6264): 1073-1076. |
21 | Liu J H, Wang J, Shao J, et al. Online social activity reflects economic status[J]. Physica A: Statistical Mechanics and Its Applications, 2016, 457: 581-589. |
22 | Marty R, Duhaut A. Global poverty estimation using private and public sector big data sources[J]. Scientific Reports, 2024, 14: 3160. |
23 | Zhao X, Yu B, Liu Y, et al. Estimation of poverty using random forest regression with multi-source data: A case study in Bangladesh[J]. Remote Sensing, 2019, 11(4): 375-392. |
24 | Niu T, Chen Y, Yuan Y. Measuring urban poverty using multi-source data and a random forest algorithm: A case study in Guangzhou[J]. Sustainable Cities and Society, 2020, 54: 102014. |
25 | Smythe I S, Blumenstock J E. Geographic microtargeting of social assistance with high-resolution poverty maps [J]. Proceedings of the National Academy of Sciences, 2022, 119(32): e2120025119. |
26 | Rotondi V, Kashyap R, Pesando L M, et al. Leveraging mobile phones to attain sustainable development[J]. Proceedings of the National Academy of Sciences, 2020, 117(24): 13413-13420. |
27 | Rentschler J, Salhab M, Jafino B A. Flood exposure and poverty in 188 countries[J]. Nature Communications, 2022, 13(1): 3527-3537. |
28 | Deville P, Linard C, Martin S, et al. Dynamic population mapping using mobile phone data [J]. Proceedings of the National Academy of Sciences, 2014, 111(45): 15888-15893. |
29 | Blumenstock J. Don’t forget people in the use of big data for development[J]. Nature, 2018, 561(7722): 170-172. |
30 | 高见, 周涛. 大数据揭示经济发展状况[J]. 电子科技大学学报, 2016, 45(4): 625-633. |
Gao J, Zhou T. Big data reveal the status of economic development[J]. Journal of University of Electronic Science and Technology of China, 2016, 45(4): 625-633. | |
31 | 廖建新. 大数据技术的应用现状与展望[J]. 电信科学, 2015, 31(7): 7-18. |
Liao J X. Big data technology: Current applications and prospects[J]. Telecommunications Science, 2015, 31(7): 7-18. | |
32 | Atkinson A B. On the measurement of poverty[J]. Econometrica: Journal of the Econometric Society, 1987,55(4): 749-764. |
33 | Ravallion M. Poverty comparisons: A guide to concepts and methods[R]. Working Paper, The World Bank, 1992. |
34 | Sen A. Commodities and capabilities[M]. Amsterdam:North-Holland, 1985. |
35 | Levitas R, Pantazis C, Fahmy E, et al. The multi-dimensional analysis of social exclusion[R]. Working Paper,DERA (Digital Education Resource Archive), 2007. |
36 | Brock K, Norton A, Bird B,et al. A rough guide to PPAS: Participatory poverty assessment: An introduction to theory and practice[M]. London: Overseas Development,2001. |
37 | Deon F, Haishan F, Carolina S-P. An adjustment to global poverty lines[R]. Working Paper, World Bank Blogs, 2022. |
38 | Eurostat. The measurement of poverty and social inclusion in the EU: Achievements and further improvements[R].Working paper,United Nations Economic Commission For Europe, 2013. |
39 | Foster J, Greer J, Thorbecke E. A class of decomposable poverty measures[J]. Econometrica: Journal of the Econometric Society, 1984,52(3): 761-766. |
40 | Gini C. Measurement of inequality of incomes[J]. The Economic Journal, 1921, 31(121): 124-126. |
41 | Sen A. Poverty: An ordinal approach to measurement[J]. Econometrica: Journal of the Econometric Society, 1976,44(2): 219-231. |
42 | Shorrocks A F. Revisiting the sen poverty index[J]. Econometrica: Journal of the Econometric Society, 1995, 63(5): 1225-1230. |
43 | Townsend P, Phillimore P, Beattie A. Health and deprivation: Inequality and the North[M].London: Routledge, 1988. |
44 | Townsend P. Poverty in the United Kingdom: A survey of household resources and standards of living[M]. Berkeley:University of California Press, 1979. |
45 | Tank Planning.Human poverty index (HPI)[EB/OL].(2015-06-11) [2025-05-18]. . |
46 | Alkire S, Santos M E. Measuring acute poverty in the developing world: Robustness and scope of the multidimensional poverty index[J]. World Development, 2014, 59: 251-274. |
47 | Elvidge C D, Baugh K E, Kihn E A, et al. Relation between satellite observed visible-near infrared emissions, population, economic activity and electric power consumption[J]. International Journal of Remote Sensing, 1997, 18(6): 1373-1379. |
48 | Henderson J V, Storeygard A, Weil D N. Measuring economic growth from outer space[J]. American Economic Review, 2012, 102(2): 994-1028. |
49 | Mellander C, Lobo J, Stolarick K, et al. Night-time light data: A good proxy measure for economic activity?[J]. PLoS ONE, 2015, 10(10): e0139779. |
50 | Sutton P C, Costanza R. Global estimates of market and non-market values derived from nighttime satellite imagery, land cover, and ecosystem service valuation[J]. Ecological Economics, 2002, 41(3): 509-527. |
51 | Frias-Martinez V, Virseda J. On the relationship between socio-economic factors and cell phone usage [C]//Proceedings of the 15th International Conference on Information and Communication Technologies and Development, Atlanta, Georgia, USA, March 12-15,Association for Computing Machinery,2012:76-84. |
52 | Pappalardo L, Pedreschi D, Smoreda Z, et al. Using big data to study the link between human mobility and socio-economic development[C]//Proceedings of the 2015 IEEE International Conference on Big Data, Santa Clara, CA,USA,October 29-November l,IEEE, 2015: 871-878. |
53 | Xu Y, Belyi A, Bojic I, et al. Human mobility and socioeconomic status: Analysis of singapore and boston [J]. Computers, Environment and Urban Systems, 2018, 72: 51-67. |
54 | Fatehkia M, Del Villar Z, Koebe T, et al. Using facebook advertising data to describe the socio-economic situation of syrian refugees in Lebanon[J]. Frontiers in big Data, 2022, 5: 1033530. |
55 | Fackbook. Facebook ads API[EB/OL].(2025-01-21) [2025-05-18]. . |
56 | McCallum I, Kyba C C M, Bayas J C L, et al. Estimating global economic well-being with unlit settlements[J]. Nature Communications, 2022, 13(1): 2459-2466. |
57 | Watmough G R, Marcinko C L J, Sullivan C, et al. Socioecologically informed use of remote sensing data to predict rural household poverty[J].Proceedings of the National Academy of Sciences,2019,116(4): 1213-1218. |
58 | Aiken E, Bellue S, Karlan D, et al. Machine learning and phone data can improve targeting of humanitarian aid[J]. Nature, 2022, 603(7903): 864-870. |
59 | Aiken E L, Bedoya G, Blumenstock J E, et al. Program targeting with machine learning and mobile phone data: Evidence from an anti-poverty intervention in Afghanistan[J]. Journal of Development Economics, 2023, 161: 103016. |
60 | Steele J E, Sundsøy P R, Pezzulo C, et al. Mapping poverty using mobile phone and satellite data[J]. Journal of The Royal Society Interface, 2017, 14(127): 20160690. |
61 | Pokhriyal N, Jacques D C. Combining disparate data sources for improved poverty prediction and mapping[J]. Proceedings of the National Academy of Sciences, 2017, 114(46): E9783-E9792. |
62 | Kondmann L, Haeberle M, Zhu X X. Combining twitter and earth observation data for local poverty mapping [C]// Proceedings of NeuRIPS Machine Learning for the Developing World Workshop, Vancouver, Canada, December 12 , NeuRIPS Machine Learning for the Developing World Workshop, 2020: 1-5. |
63 | Chi G, Fang H, Chatterjee S, et al. Microestimates of wealth for all low- and middle-income countries[J]. Proceedings of the National Academy of Sciences, 2022, 119(3): e2113658119. |
64 | Blumenstock J E. Fighting poverty with data[J]. Science, 2016, 353(6301): 753-754. |
65 | Pan S J, Yang Q. A survey on transfer learning[J]. IEEE Transactions on knowledge and Data Engineering, 2009, 22(10): 1345-1359. |
66 | Jean N, Burke M, Xie M, et al. Combining satellite imagery and machine learning to predict poverty[J]. Science, 2016, 353(6301): 790-794. |
67 | Head A, Manguin M, Tran N, et al. Can human development be measured with satellite imagery[C]// Proceedings of the Ninth International Conference on Information and Communication Technologies and Development, Lahore Pakistan, November 16 , Association for Computing Machinery, 2017, 8: 1-11. |
68 | Xie M, Jean N, Burke M, et al. Transfer learning from deep features for remote sensing and poverty mapping[C]//Proceedings of the AAAI Conference on Artificial Intelligence,Phoenix, Arizona USA, February 12–17 , AAAI Press,2016:3929-3935. |
69 | Yeh C, Perez A, Driscoll A, et al. Using publicly available satellite imagery and deep learning to understand economic well-being in Africa[J]. Nature Communications, 2020, 11(1): 1-11. |
70 | Espín-Noboa L, Kertész J, Karsai M. Interpreting wealth distribution via poverty map inference using multimodal data[C]//Proceedings of the ACM Web Conference 2023, Austin TX USA, April 30 , Association for Computing Machinery,2023: 4029-4040. |
71 | Ratledge N, Cadamuro G, de la Cuesta B, et al. Using machine learning to assess the livelihood impact of electricity access[J].Nature, 2022, 611: 491-495. |
72 | Onnela J P, Saramäki J, Hyvönen J, et al. Structure and tie strengths in mobile communication networks[J]. Proceedings of the National Academy of Sciences, 2007, 104(18): 7332-7336. |
73 | Filho R M, Borges G R, Almeida J M, et al. Inferring user social class in online social networks[C]//Proceedings of the 8th workshop on social network mining and analysis, New York, United States, August 24 , Association for Computing Machinery,2014: 1-5. |
74 | Dunbar R I, Arnaboldi V, Conti M, et al. The structure of online social networks mirrors those in the offline world[J]. Social Networks, 2015, 43: 39-47. |
75 | Steele J E, Pezzulo C, Albert M, et al. Mobility and phone call behavior explain patterns in poverty at high-resolution across multiple settings[J]. Humanities and Social Sciences Communications, 2021, 8:288-299. |
76 | Deville P, Song C, Eagle N, et al. Scaling identity connects human mobility and social interactions[J]. Proceedings of the National Academy of Sciences, 2016, 113(26): 7047-7052. |
77 | Smith-Clarke C, Mashhadi A, Capra L. Poverty on the cheap: Estimating poverty maps using aggregated mobile communication networks[C]//Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Toronto, Ontario, Canada, April 27,Association for Computing Machinery.2014: 511-520. |
78 | Wang X, Pei T, Song C, et al. How does socioeconomic status influence social relations? A perspective from mobile phone data[J]. Physica A: Statistical Mechanics and Its Applications, 2023, 615: 128612. |
79 | Eagle N, Macy M, Claxton R. Network diversity and economic development[J].Science, 2010, 328(5981): 1029-1031. |
80 | Gutierrez T, Krings G, Blondel V D. Evaluating socio-economic state of a country analyzing airtime credit and mobile phone datasets[J]. ArXiv Preprint ArXiv,2013:13094496. |
81 | Mao H, Shuai X, Ahn Y Y, et al. Quantifying socio-economic indicators in developing countries from mobile phone communication data: Applications to Côte d’Ivoire[J]. EPJ Data Science, 2015, 4(1): 15-30. |
82 | Vaca Ruiz C, Quercia D, Aiello L M, et al. Taking Brazil's pulse: Tracking growing urban economies from online attention[C]//Proceedings of the 23rd International Conference on World Wide Web,Seoul, Korea, April 7 , Association for Computing Machinery,2014: 451-456. |
83 | Norbutas L, Corten R. Network structure and economic prosperity in municipalities: A large-scale test of social capital theory using social media data[J]. Social Networks, 2018, 52: 120-134. |
84 | Tóth G, Wachs J, Di Clemente R, et al. Inequality is rising where social network segregation interacts with urban topology[J]. Nature Communications, 2021, 12(1): 1143-1151. |
85 | Preoţiuc-Pietro D, Volkova S, Lampos V, et al. Studying user income through language, behaviour and affect in social media[J]. PLoS ONE, 2015, 10(9): e0138717. |
86 | Mikolov T, Chen K, Corrado G S, et al. Efficient estimation of word representations in vector space[C]//Proceedings of the International Conference on Learning Representations,ICLR 2013,Scottsdale, Arizona, USA, May 2-4, 2013. |
87 | Lampos V, Aletras N, Geyti J K, et al. Inferring the socioeconomic status of social media users based on behaviour and language[C]//Proceedings of the Advances in Information Retrieval: 38th European Conference on IR Research, ECIR 2016, Padua, Italy, March 20-23 , Springer International Publishing, 2016: 689-695. |
88 | Flekova L, Preoţiuc-Pietro D, Ungar L. Exploring stylistic variation with age and income on twitter[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, Berlin, Germany, August 7-12 ,Association for Computational Linguistics,2016: 313-319. |
89 | Gimpel K, Schneider N, O’connor B, et al. Part-of-speech tagging for twitter: Annotation, features, and experiments[C]//Proceedings of the 49th annual meeting of the Association for Computational Linguistics: Human Language Technologies, Portland, Oregon, USA, June 19-24 , Association for Computational Linguistics,2011: 42-47. |
90 | Coleman M, Liau T L. A computer readability formula designed for machine scoring[J]. Journal of Applied Psychology, 1975, 60(2): 283-284. |
91 | Flesch R. A new readability yardstick[J]. Journal of Applied Psychology, 1948, 32(3): 221-233. |
92 | Anderson J. Lix and rix: Variations on a little-known readability index[J]. Journal of Reading, 1983, 26(6): 490-496. |
93 | Heylighen F, Dewaele J M. Variation in the contextuality of language: An empirical measure[J]. Foundations of science, 2002, 7: 293-340. |
94 | Beinborn L, Zesch T, Gurevych I. Towards fine-grained readability measures for self-directed language learning [C]// Proceedings of Electronic Conference Proceedings, Lund, Sweden, October 25 , Proceedings of the SLTC workshop on NLP for CALL, 2012, 80: 11-19. |
95 | Quercia D, Ellis J, Capra L, et al. Tracking “gross community happiness” from tweets[C]//Proceedings of the ACM 2012 Conference on Computer Supported Cooperative Work, Seattle Washington, USA, February 11 , Association for Computing Machinery,2012: 965-968. |
96 | Lerman K, Arora M, Gallegos L, et al. Emotions, demographics and sociability in twitter interactions[C]//Proceedings of the International AAAI Conference on Web and Social Media, Cologne, Germany,May 17-20,2016: 201-210. |
97 | Thelwall M, Buckley K, Paltoglou G. Sentiment strength detection for the social web[J]. Journal of the American Society for Information Science and Technology, 2012, 63(1): 163-173. |
98 | Warriner A B, Kuperman V, Brysbaert M. Norms of valence, arousal, and dominance for 13,915 English lemmas[J]. Behavior Research Methods, 2013, 45: 1191-1207. |
99 | Wesolowski A, Eagle N, Noor A M, et al. The impact of biases in mobile phone ownership on estimates of human mobility[J]. Journal of The Royal Society Interface, 2013, 10(81): 20120986. |
100 | 王璐, 孟小峰. 位置大数据隐私保护研究综述 [J]. 软件学报, 2014, 25(4): 693-712. |
Wang L, Meng X F. Location privacy preservation in big data era: A survey[J]. Journal of Software, 2014, 25(4): 693-712. | |
101 | Munoz Boudet A M, Buitrago P, Leroy De La Briere B, et al. Gender differences in poverty and household composition through the life-cycle: A global perspective [R]. Working Paper,The World Bank, 2018. |
[1] | 谷炜, 刘亚金, Lu Feng Susan, 闫相斌. 人工智能驱动管理决策:应用、感知与偏见[J]. 中国管理科学, 2025, 33(5): 99-112. |
[2] | 葛伟, 肖涵. 人工智能、居民消费与经济奇点[J]. 中国管理科学, 2025, 33(3): 93-106. |
[3] | 石峰, 杨扬, 袁韵, 贾建民. 人工智能驱动下的营销变革[J]. 中国管理科学, 2025, 33(1): 111-123. |
[4] | 王海燕, 盛昭瀚. 大数据驱动的复杂系统管理情景建模:技术与流程[J]. 中国管理科学, 2025, 33(1): 22-33. |
[5] | 胡祥培, 周雅娴. 基于生成式人工智能的经济管理学科相关研究综述[J]. 中国管理科学, 2025, 33(1): 76-97. |
[6] | 马德青,王晓晴,胡劲松. 多渠道零售下考虑消费者反展厅现象的平台型供应链销售模式选择[J]. 中国管理科学, 2024, 32(5): 133-146. |
[7] | 孟秀丽,杨静,刘波. 基于大数据技术的众包物流服务质量竞争策略[J]. 中国管理科学, 2024, 32(4): 130-140. |
[8] | 严雨萌, 熊熊, 路磊, 张维, 张永杰. 从“管中窥豹”到“高屋建瓴”:大数据背景下的个人投资者行为[J]. 中国管理科学, 2023, 31(9): 244-254. |
[9] | 赵慧, 张涛, 汤珂. 集聚如何影响南北方创业活动?——来自高频全量企业大数据的证据[J]. 中国管理科学, 2023, 31(6): 231-240. |
[10] | 杨善林, 李霄剑, 张强, 焦建玲, 杨昌辉. 人工智能与管理变革[J]. 中国管理科学, 2023, 31(6): 1-11. |
[11] | 宋金波, 周禹杉, 何秋映. 情绪负荷对网络问政平台运作服务质量和效率的影响—来自文本数据的证据[J]. 中国管理科学, 2023, 31(3): 133-142. |
[12] | 罗健, 唐加福, 于清雅, 吴志樵. O2O外卖商圈划分及顾客需求分布规律发现[J]. 中国管理科学, 2023, 31(3): 58-68. |
[13] | 邱若臻, 吴旭, 孙月, 朱珠. 不确定需求下考虑大数据投资决策的供应链鲁棒优化及协调模型[J]. 中国管理科学, 2023, 31(1): 128-141. |
[14] | 徐选华, 马志鹏, 陈晓红. 基于公众偏好大数据分析的大群体应急决策质量动态演化研究[J]. 中国管理科学, 2022, 30(7): 140-149. |
[15] | 袁先智, 周云鹏, 严诚幸, 刘海洋, 钱国骐, 王帆, 韦立坚, 李志勇, 李波, 李祥林, 曾途. 财务欺诈风险特征筛选框架的建立和应用[J]. 中国管理科学, 2022, 30(3): 43-54. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|