中国管理科学 ›› 2025, Vol. 33 ›› Issue (1): 76-97.doi: 10.16381/j.cnki.issn1003-207x.2024.1390cstr: 32146.14.j.cnki.issn1003-207x.2024.1390
收稿日期:
2024-08-13
修回日期:
2024-11-21
出版日期:
2025-01-25
发布日期:
2025-02-14
通讯作者:
周雅娴
E-mail:yaxian1118@mail.dlut.edu.cn
Received:
2024-08-13
Revised:
2024-11-21
Online:
2025-01-25
Published:
2025-02-14
Contact:
Yaxian Zhou
E-mail:yaxian1118@mail.dlut.edu.cn
摘要:
以国家自然科学基金委员会和FMS认定的管理类高质量中英文期刊为文献检索依据,按照管理科学部四个学科(管理科学与工程、工商管理、经济科学、宏观管理与政策)对生成式人工智能在经济管理学科的相关研究进行文献计量分析。研究结果表明:(1)中英文文献的期刊、研究机构和合作网络存在差异,中文文献集中于信息资源管理和图书情报领域,合作关系依赖于学科、机构和地理位置的相似性;英文文献更加多样和广泛,但机构间尚未形成持续稳定的合作成果输出;跨学科、跨机构和跨地域之间的协同研究有待加强。(2)现有研究主要集中在宏观管理与政策和管理科学与工程学科,侧重实证应用研究;工商管理和经济科学学科,以及专注于生成式人工智能技术和风险问题的研究相对较少;英文文献的研究主题和应用领域均比中文文献更加广泛,研究数量和聚焦程度也高于中文文献。未来研究可聚焦于生成式人工智能与管理工具、理论方法及复杂管理情境的交叉融合,并推动具体管理研究范式的变革。
中图分类号:
胡祥培, 周雅娴. 基于生成式人工智能的经济管理学科相关研究综述[J]. 中国管理科学, 2025, 33(1): 76-97.
Xiangpei Hu, Yaxian Zhou. Review of Research on Economics and Management Based on Generative Artificial Intelligence[J]. Chinese Journal of Management Science, 2025, 33(1): 76-97.
1 | 孙凝晖. 人工智能与智能计算的发展[R]. 研究报告,十四届全国人大常委会, 2024. |
Sun N H. Development of artificial intelligence and intelligent computing[R]. Discussion Paper,the 14th Standing Committee of the National People’s Congress, 2024. | |
2 | 国家发展和改革委员会, 教育部, 科学技术部, 等. 生成式人工智能服务管理暂行办法[EB/OL]. (2023-07-10) [2024-05-25]. . |
National Development and Reform Commission, Ministry of Education, Ministry of Science and Technology, et al. Provisional measures for the management of generative artificial intelligence services [EB/OL]. (2023-07-10) [2024-05-25].. | |
3 | 欧阳日辉. 生成式人工智能与金融业深度融合:理论机理及发展路径[J]. 求索, 2024(1): 57-65. |
Ouyang R H. Generative artificial intelligence and deep integration with finance: Theoretical mechanism and development path[J]. Seeker, 2024(1): 57-65. | |
4 | van Dis E A M, Bollen J, Zuidema W, et al. ChatGPT: Five priorities for research[J]. Nature, 2023, 614(7947): 224-226. |
5 | OpenAI. Hello GPT-4o[EB/OL].(2024-05-13) [2024-11-08]. . |
6 | 人民网财经研究院, 至顶科技. 2024年中国AI大模型产业发展报告[R]. 研究报告,人民网财经研究院, 至顶科技, 2024. |
People’s Daily Finance Research Institute, ZDNet. 2024 China AI large model industry development report[R]. Discussion Paper,People’s Daily Finance Research Institute, ZDNet, 2024. | |
7 | 北京市科学技术委员会, 中关村科技园区管理委员会. 北京市人工智能行业大模型创新应用白皮书(2023年)[R]. 研究报告,北京市科学技术委员会, 中关村科技园区管理委员会, 2023. |
Beijing Municipal Science and Technology Commission, Zhongguancun Science and Technology Park Administrative Committee. Beijing artificial intelligence industry large model innovation application white paper (2023)[R]. Discussion Paper, Beijing Municipal Science and Technology Commission, Zhongguancun Science and Technology Park Administrative Committee, 2023. | |
8 | 许可. 制度与技术同频共振: 生成式人工智能治理的中国方案[EB/OL]. (2023-07-13) [2024-05-26]. . |
Xu K. Synchronized development of policy and technology: China’s approach to governing generative artificial intelligence [EB/OL]. (2023-07-13) [2024-05-26].. | |
9 | 汪寿阳, 李明琛, 杨昆, 等. ChatGPT+金融: 八个值得关注的研究方向与问题[J]. 管理评论, 2023, 35(4): 3-11. |
Wang S Y, Li M C, Yang K, et al. ChatGPT+Finance: Eight noteworthy research directions and issues[J]. Management Review, 2023, 35(4): 3-11. | |
10 | 工业和信息化部, 中央网络安全和信息化委员会办公室, 教育部, 等.算力基础设施高质量发展行动计划[R]. 研究报告,工业和信息化部, 中央网络安全和信息化委员会办公室, 教育部, 国家卫生健康委员会, 中国人民银行, 国务院国有资产监督管理委员会, 2023. |
Ministry of Industry and Information Technology, Office of the Central Cyberspace Affairs Commission, Ministry of Education, et al. Action plan for high-quality development of computing power infrastructure[R]. Discussion Paper,Ministry of Industry and Information Technology, Office of the Central Cyberspace Affairs Commission, Ministry of Education, National Health Commission, People’s Bank of China, State-owned Assets Supervision and Administration Commission of the State Council, 2023. | |
11 | 宋艳飞, 张瑶. 美国人工智能战略政策新动向及特点分析[J]. 人工智能, 2024(2): 70-78. |
Song Y F, Zhang Y. New trends and characteristics of U.S. artificial intelligence strategic policies[J]. AI-View, 2024(2): 70-78. | |
12 | 樊文扬. 加拿大发布AIGC原则回应隐私保护,涉知情同意、权利行使[EB/OL]. (2024-01-12) [2024-05-26]. . |
Fan W Y. Canada released AIGC principles in response to privacy protection, covering informed consent and rights exercise [EB/OL]. (2024-01-12) [2024-05-26]. . | |
13 | 中国科学院网信工作网. 英《生成式人工智能框架》定义十大原则[EB/OL]. (2024-03-07) [2024-05-26]. . |
Chinese Academy of Sciences Network Security Office. UK “generative artificial intelligence framework” defines ten principles[EB/OL]. (2024-03-07) [2024-05-26].. | |
14 | 央视新闻. 欧洲议会正式批准欧盟《人工智能法案》[EB/OL]. (2024-03-13) [2024-05-26]. . |
CCTV News. European parliament officially approves EU “artificial intelligence act”[EB/OL]. (2024-03-13)[2024-05-26].. | |
15 | 新华社. 教科文组织呼吁规范生成式人工智能在教育中的应用[EB/OL]. (2023-09-08) [2024-05-26]. . |
Xinhua News Agency. UNESCO calls for regulating the application of generative artificial intelligence in education[EB/OL]. (2023-09-08)[2024-05-26].. | |
16 | Noy S, Zhang W. Experimental evidence on the productivity effects of generative artificial intelligence[J]. Science, 2023, 381(6654): 187-192. |
17 | Niu Y, Wu J, Jiang S, et al. The bullwhip effect in servitized manufacturers[J]. Management Science, 2024, DOI: 10.1287/mnsc.2023.01026 . |
18 | Susarla A, Gopal R, Thatcher J B, et al. The janus effect of generative ai: Charting the path for responsible conduct of scholarly activities in information systems[J]. Information Systems Research, 2023, 34(2): 399-408. |
19 | Gm H, Gourisaria M K, Pandey M, et al. A comprehensive survey and analysis of generative models in machine learning[J]. Computer Science Review, 2020, 38: 100285. |
20 | OpenAI. ChatGPT[EB/OL]. (2022-11-30) [2023-09-30]. . |
21 | 中国信息通信研究院, 京东探索研究院.人工智能生成内容(AIGC)白皮书[R]. 研究报告,中国信息通信研究院, 京东探索研究院, 2022. |
China Academy of Information and Communications Technology, JD Exploration Research Institute. White paper on artificial intelligence generated content (AIGC)[R]. Discussion Paper,China Academy of Information and Communications Technology, JD Exploration Research Institute, 2022. | |
22 | 中国优选法统筹法与经济数学研究会, 管理科学与工程学会, 中国系统工程学会. FMS管理科学高质量期刊推荐列表[EB/OL]. (2022-12-10) [2024-11-06]. . |
Chinese Society of Optimization, Planning Overall, and Mathematics Economic, Society of Management Science and Engineering of China, Systems Engineering Society of China. FMS management science high-quality journals recommendation list[EB/OL]. (2022-12-10)[2024-11-06]. . | |
23 | 国家自然科学基金委员会. 国家自然科学基金申请代码[EB/OL]. (2023-01-05) [2024-05-27]. . |
National Natural Science Foundation of China. Application codes for the national natural science foundation [EB/OL]. (2023-01-05)[2024-05-27]. . | |
24 | Leiden University. VOSviewer[EB/OL]. (2023-10-31) [2024-11-06]. . |
25 | 尤洋, 郭宇. ChatGPT与因果性[J]. 科学学研究, 2023, 41(12): 2122–2130. |
You Y, Guo Y. ChatGPT and causality[J]. Studies in Science of Science, 2023, 41(12): 2122-2130. | |
26 | 杨善林, 李霄剑, 张强, 等. AIGC的科学基础[J]. 工程管理科技前沿, 2023, 42(6): 1-14. |
Yang S L, Li X J, Zhang Q, et al. Scientific basis of artificial intelligence generated content[J]. Frontiers of Science and Technology of Engineering Management, 2023, 42(6): 1-14. | |
27 | 李春涛, 闫续文, 张学人. GPT在文本分析中的应用: 一个基于Stata的集成命令用法介绍[J]. 数量经济技术经济研究, 2024, 41(5): 197-216. |
Li C T, Yan X W, Zhang X R. Application of GPT in textual analysis: An introduction to a community develuped command within stata[J]. Journal of Quantitative & Technological Economics, 2024, 41(5): 197-216. | |
28 | Pan S, Luo L, Wang Y, et al. Unifying large language models and knowledge graphs: A roadmap[J]. IEEE Transactions on Knowledge and Data Engineering, 2024, 36(7): 3580-3599. |
29 | Yang L, Chen H, Li Z, et al. Give us the facts: Enhancing large language models with knowledge graphs for fact-aware language modeling[J]. IEEE Transactions on Knowledge and Data Engineering, 2024, 36(7): 3091-3110. |
30 | Yang R, Zhu J, Man J, et al. Enhancing text-based knowledge graph completion with zero-shot large language models: A focus on semantic enhancement[J]. Knowledge-based Systems, 2024, 300: 112155. |
31 | Zhou Y, Zhu C, Zhu W. Promvsd: Towards unsupervised knowledge graph anomaly detection via prior knowledge integration and multi-view semantic-driven estimation[J]. Information Processing & Management, 2024, 61(4): 103705. |
32 | Yang Z, Lin Y, Xu Y, et al. Interpretable disease prediction via path reasoning over medical knowledge graphs and admission history[J]. Knowledge-based Systems, 2023, 281: 111082. |
33 | Alavi M, Leidner D, Mousavi R. A knowledge management perspective of generative artificial intelligence[J]. Journal of the Association for Information Systems, 2024, 25(1): 1-12. |
34 | Benbya H, Strich F, Tamm T. Navigating generative artificial intelligence promises and perils for knowledge and creative work[J]. Journal of the Association for Information Systems, 2024, 25(1):23-36. |
35 | Sumbal M S, Amber Q, Tariq A, et al. Wind of change: How ChatGPT and big data can reshape the knowledge management paradigm?[J]. Industrial Management & Data Systems, 2024, 124(9): 2736-2757. |
36 | Markovitch D G, Stough R A, Huang D. Consumer reactions to chatbot versus human service: An investigation in the role of outcome valence and perceived empathy[J]. Journal of Retailing and Consumer Services, 2024, 79: 103847. |
37 | Sarraf S, Kar A K, Janssen M. How do system and user characteristics, along with anthropomorphism, impact cognitive absorption of chatbots-Introducing SUCCAST through a mixed methods study[J]. Decision Support Systems, 2024, 178: 114132. |
38 | Chakraborty D, Kar A K, Patre S, et al. Enhancing trust in online grocery shopping through generative AI chatbots[J]. Journal of Business Research, 2024, 180: 114737. |
39 | Luna-Jimenez C, Gil-Martin M, D’Haro L F, et al. Evaluating emotional and subjective responses in synthetic art-related dialogues: A multi-stage framework with large language models[J]. Expert Systems with Applications, 2024, 255: 124524. |
40 | Qian T Y, Li W, Gong H, et al. Experience is all you need: A large language model application of fine-tuned GPT-3.5 and roberta for aspect-based sentiment analysis of college football stadium reviews[J]. Sport Management Review, 2024, DOI: 10.1080/14413523.2024.2386467 . |
41 | Yoganarasimhan H, Iakovetskaia I. From feeds to inboxes: A comparative study of polarization in facebook and email news sharing[J]. Management Science, 2024, 70(9): 6461-6472. |
42 | Wamba S F, Guthrie C, Queiroz M M, et al. ChatGPT and generative artificial intelligence: An exploratory study of key benefits and challenges in operations and supply chain management[J]. International Journal of Production Research, 2024, 62(16): 5676-5696. |
43 | Jackson I, Ivanov D, Dolgui A, et al. Generative artificial intelligence in supply chain and operations management: A capability-based framework for analysis and implementation[J]. International Journal of Production Research, 2024, 62(17): 6120-6145. |
44 | Wamba S F, Queiroz M M, Jabbour C J C, et al. Are both generative AI and ChatGPT game changers for 21st-Century operations and supply chain excellence?[J]. International Journal of Production Economics, 2023, 265: 109015. |
45 | Li L, Zhu W, Chen L, et al. Generative AI usage and sustainable supply chain performance: A practice-based view[J]. Transportation Research Part E:Logistics and Transportation Review, 2024, 192: 103761. |
46 | Li L, Liu Y, Jin Y, et al. Generative AI-enabled supply chain management: The critical role of coordination and dynamism[J]. International Journal of Production Economics, 2024, 277: 109388. |
47 | Jackson I, Jesus Saenz M, Ivanov D. From natural language to simulations: Applying AI to automate simulation modelling of logistics systems[J]. International Journal of Production Research, 2024, 62(4): 1434-1457. |
48 | Pourbehzadi M, Javidi G, Howell C J, et al. Enhanced (cyber) situational awareness: Using interpretable principal component analysis (iPCA) to automate vulnerability severity scoring[J]. Decision Support Systems, 2024, 186: 114308. |
49 | Gupta B B, Gaurav A, Arya V. Navigating the security landscape of large language models in enterprise information systems[J]. Enterprise Information Systems, 2024, 18(4):2310846. |
50 | Mostajabdaveh M, Yu T T, Ramamonjison R, et al. Optimization modeling and verification from problem specifications using a multi-agent multi-stage LLM framework[J]. INFOR: Information Systems and Operational Research, 2024, 62(4): 599-617. |
51 | Ahmed T, Choudhury S. LM4OPT: Unveiling the potential of large language models in formulating mathematical optimization problems[J]. INFOR: Information Systems and Operational Research, 2024, 62(4): 559-572. |
52 | Chen H, Constante-Flores G E, Li C. Diagnosing infeasible optimization problems using large language models[J]. INFOR: Information Systems and Operational Research, 2024, 62(4): 573-587. |
53 | Yang L, Wang Z, Li Z, et al. An empirical study of multimodal entity-based sentiment analysis with ChatGPT: Improving in-context learning via entity-aware contrastive learning[J]. Information Processing & Management, 2024, 61(4): 103724. |
54 | Eberhard L, Popova K, Walk S, et al. Computing recommendations from free-form text[J]. Expert Systems with Applications, 2024, 236: 121268. |
55 | Khan N D, Khan J A, Li J, et al. Leveraging large language model ChatGPT for enhanced understanding of end-user emotions in social media feedbacks[J]. Expert Systems with Applications, 2025, 261: 125524. |
56 | Li T, Wang Z, Chai L, et al. MT4CrossOIE: Multi-stage tuning for cross-lingual open information extraction[J]. Expert Systems with Applications, 2024, 255: 124760. |
57 | Barret N, Gauquier A, Law J-J, et al. Finding meaningful paths in heterogeneous graphs with pathways[J]. Information Systems, 2025, 127: 102463. |
58 | Nashaat M, Miller J. Towards efficient fine-tuning of language models with organizational data for automated software review[J]. IEEE Transactions on Software Engineering, 2024, 50(9): 2240-2253. |
59 | Kern F B, Wu CT, Chao Z C. Assessing novelty, feasibility and value of creative ideas with an unsupervised approach using GPT-4[J]. British Journal of Psychology, 2024, DOI: 10.1111/bjop.12720 . |
60 | Hellwig N C, Fehle J, Wolff C. Exploring large language models for the generation of synthetic training samples for aspect-based sentiment analysis in low resource settings[J]. Expert Systems with Applications, 2025, 261: 125514. |
61 | Liu S, Chen J, Feng Y, et al. Generative artificial intelligence and data augmentation for prognostic and health management: Taxonomy, progress, and prospects[J]. Expert Systems with Applications, 2024, 255: 124511. |
62 | Praveen S V, Gajjar P, Ray R K, et al. Crafting clarity: Leveraging large language models to decode consumer reviews[J]. Journal of Retailing and Consumer Services, 2024, 81: 103975. |
63 | Cook A, Karakul O. LLM-commentator: Novel fine-tuning strategies of large language models for automatic commentary generation using football event data[J]. Knowledge-based Systems, 2024, 300: 112219. |
64 | Pornprasit C, Tantithamthavorn C. Fine-tuning and prompt engineering for large language models-based code review automation[J]. Information and Software Technology, 2024, 175: 107523. |
65 | Buchanan J, Hickman W. Do people trust humans more than ChatGPT?[J]. Journal of Behavioral and Experimental Economics, 2024, 112: 102239. |
66 | Korzynski P, Costa e Silva S, Gorska A M, et al. Trust in AI and top management support in generative-AI adoption[J]. Journal of Computer Information Systems, 2024, DOI: 10.1080/08874417.2024.2401986 . |
67 | Piller F T, Srour M, Marion T J. Generative AI, innovation, and trust[J]. Journal of Applied Behavioral Science, 2024, 60(4):613-622. |
68 | Fan S, Ilk N, Kumar A, et al. Blockchain as a trust machine: From disillusionment to enlightenment in the era of generative AI[J]. Decision Support Systems, 2024, 182: 114251. |
69 | 张晓林. Library-Inside: AI赋能图书馆新质生产力的一种基础模型[J]. 中国图书馆学报, 2024, 50(3): 4-16. |
Zhang X L. Library-Inside: A foundation model for AI-empowered new quality productive forces for library services[J]. Journal of Library Science in China, 2024, 50(3): 4-16. | |
70 | 郭亚军, 冯思倩, 寇旭颍, 等. 生成式AI背景下的图书馆员:角色、技能与进路[J]. 图书情报工作, 2024, 68(13): 69-77. |
Guo Y J, Feng S Q, Kou X Y, et al. Librarians in the context of generative AI: Roles, skills, and approaches[J]. Library and Information Service, 2024, 68(13): 69-77. | |
71 | 丁遒劲, 苏静. 面向生成式人工智能(AIGC)的图书馆信息资源建设优化策略研究[J]. 图书情报工作, 2024, 68(18): 23-31. |
Ding Q J, Su J. Research on the optimization strategies for library information resources construction oriented to the development of AIGC[J]. Library and Information Service, 2024, 68(18): 23-31. | |
72 | 吴若航, 茆意宏. 生成式人工智能驱动图书馆阅读服务变革[J]. 图书情报工作, 2023, 67(22): 80-87. |
Wu R H, Mao Y H. Transformation of library reading services driven by generative artificial intelligence[J]. Library and Information Service, 2023, 67(22): 80-87. | |
73 | 李佳轩, 储节旺, 杜秀秀. 关联、黑箱与赋能: AIGC驱动智慧图书馆的转型路径[J]. 图书情报工作, 2023, 67(23): 18-27. |
Li J X, Chu J W, Du X X. Connection, black box and empowerment: The path of AIGC to drive the transformation of smart libraries[J]. Library and Information Service, 2023, 67(23): 18-27. | |
74 | 龚芙蓉. ChatGPT类生成式AI对高校图书馆数字素养教育的影响探析[J]. 图书情报知识, 2023, 40(5): 97-106+156. |
Gong F R. The impact of generative AI like ChatGPT on digital literacy education in university libraries[J]. Documentation, Information & Knowledge, 2023, 40(5): 97-106+156. | |
75 | 储节旺, 杜秀秀. 英美大学ChatGPT使用规定对我国高校图书馆的启示[J]. 图书情报工作, 2024, 68(5): 42-53. |
Chu J W, Du X X. Enlightenment of ChatGPT guidance in british and american universities to Chinese university libraries[J]. Library and Information Service, 2024, 68(5): 42-53. | |
76 | 杨俊, 谭丰隆, 陈婧. 从ChatGPT到“LibGPT”: 生成式人工智能驱动的新一代图书馆[J]. 图书情报工作, 2024, 68(9): 3-12. |
Yang J, Tan F L, Chen J. From ChatGPT to “LibGPT”: Generative artificial intelligence-driven new generation of libraries[J]. Library and Information Service, 2024, 68(9): 3-12. | |
77 | 欧阳峥峥, 刘小杰, 马毓聪, 等. 学术出版领域关于AI工具使用的应对策略探析——以ChatGPT为例[J]. 图书情报工作, 2024, 68(5): 54-62. |
Ouyang Z Z, Liu X J, Ma Y C, et al. An exploration of response strategies on the use of AI tools in academic publishing: Taking ChatGPT as an example[J]. Library and Information Service, 2024, 68(5): 54-62. | |
78 | 张新新, 丁靖佳. 生成式智能出版的技术原理与流程革新[J]. 图书情报知识, 2023, 40(5): 68-76. |
Zhang X X, Ding J J. Technical principles and process innovations of generative intelligent publishing[J]. Documentation, Information & Knowledge, 2023, 40(5): 68-76. | |
79 | 张新新, 黄如花. 生成式智能出版的应用场景、风险挑战与调治路径[J]. 图书情报知识, 2023, 40(5): 77-86+27. |
Zhang X X, Huang R H. Application scenarios, risk challenges and regulatory pathways of generative intelligent publishing[J]. Documentation, Information & Knowledge, 2023, 40(5): 77-86+27. | |
80 | 方卿, 陈瑞. ChatGPT下科技期刊语义出版的变革[J]. 图书情报工作, 2024, 68(18): 4-12. |
Fang Q, Chen R. The changes in semantic publishing for scientific journals under ChatGPT[J]. Library and Information Service, 2024, 68(18): 4-12. | |
81 | 王鹏涛, 徐润婕. AIGC介入知识生产下学术出版信任机制的重构研究[J]. 图书情报知识, 2023, 40(5): 87-96. |
Wang P T, Xu R J. Reconstruction of trust mechanism in academic publishing under the intervention of AIGC in knowledge production[J]. Documentation, Information & Knowledge, 2023, 40(5): 87-96. | |
82 | 陆伟, 汪磊, 程齐凯, 等. 数智赋能信息资源管理新路径: 指令工程的概念、内涵和发展[J]. 图书情报知识, 2024, 41(1): 6-11. |
Lu W, Wang L, Cheng Q K, et al. A new approach for information resource management empowered by data intelligence: The concept, connotation and development of instruction engineering[J]. Documentation, Information & Knowledge, 2024, 41(1): 6-11. | |
83 | 李白杨,白云,詹希旎,等. 人工智能生成内容(AIGC)的技术特征与形态演进[J]. 图书情报知识, 2023, 40(1): 66-74. |
Li B Y, Bai Y, Zhan X N, et al. The technical features and aromorphosis of artificial intelligence generated content (AIGC)[J]. Documentation, Information & Knowledge, 2023, 40(1): 66-74. | |
84 | 陆伟,刘家伟,马永强,等. ChatGPT为代表的大模型对信息资源管理的影响[J]. 图书情报知识, 2023, 40(2): 6-9+70. |
Lu W, Liu J W, Ma Y Q, et al. The influence of large language models represented by ChatGPT on information resources management[J]. Documentation, Information & Knowledge, 2023, 40(2): 6-9+70. | |
85 | 马海群,廉龙颖. 信息资源管理领域ChatGPT的研究图景——一项系统性文献综述[J]. 图书情报工作, 2024, 68(19): 114-127. |
Ma H Q, Lian L Y. Research landscape of ChatGPT in the field of information resources management: A systematic literature review[J]. Library and Information Service, 2024, 68(19): 114-127. | |
86 | 赵志枭,胡蝶,刘畅,等.人文社科领域中文通用大模型性能评测[J]. 图书情报工作, 2024, 68(13): 132-143. |
Zhao Z X, Hu D, Liu C, et al. Performance evaluation of Chinese universal large models in the field of humanities and social sciences[J]. Library and Information Service, 2024, 68(13): 132-143. | |
87 | 张琪,孔嘉,胡昊天,等. 重建知识源流: 将结构化知识自动溯源至史籍原文[J]. 情报学报, 2024, 43(4): 405-415. |
Zhang Q, Kong J, Hu H T, et al. Recapturing the flow of knowledge: Tracing structured knowledge back to historical records[J]. Journal of the China Society for Scientific and Technical Information, 2024, 43(4): 405-415. | |
88 | 夏翠娟. 数字人文的理论沿革和范式转向: 从“人文研究的数字方法”到“后数字时代的人文研究”[J]. 中国图书馆学报, 2024, 50(5): 83-101. |
Xia C J. Theoretical evolution and paradigm shift of digital humanities: From "digital approaches for humanities research" to "humanities research in the post-digital era"[J]. Journal of Library Science in China, 2024, 50(5): 83-101. | |
89 | 夏翠娟. 文化记忆: 从后现代到后数字时代[J]. 图书情报知识, 2024, 41(6):75-82. |
Xia C J. Cultural memory: From postmodern to post-digital era[J]. Documentation, Information & Knowledge, 2024,41(6):75-82. | |
90 | 张越,郭玥,余江.通用人工智能驱动的科研新范式:理论与实践[J]. 科学学研究, 2024, DOI: 10.16192/j.cnki.1003-2053.20240829.001 . |
Zhang Y, Guo Y, Yu J. Artificial general intelligence driven new research paradigm: Theory and practice[J]. Studies in Science of Science, 2024,DOI:10.16192/j.cnki.1003-2053.20240829.001 . | |
91 | 刘江峰, 张冉, 王东波, 等. 追溯科学融合的历史轨迹:AIGC赋能交叉科学测度研究[J]. 图书情报工作, 2024, 68(7): 137-150. |
Liu J F, Zhang R, Wang D B, et al. Tracing the historical trajectory of scientific integration: AIGC empowers interdisciplinary measurement research[J]. Library and Information Service, 2024, 68(7): 137-150. | |
92 | 陈帅朴, 刘芳霖, 钱宇星, 等. 检入新境: 大语言模型引领的信息检索主题与知识关联演化分析[J]. 图书情报知识, 2024(6): 1-14. |
Chen S P, Liu F L, Qian Y X, et al. Topic and knowledge association evolution in the field of large language model-enabled information retrieval[J]. Documentation, Information & Knowledge, 2024(6): 1-14. | |
93 | 王若佳,范科鸣,刘智锋,等. 生成式人工智能环境下用户信息检索式行为研究[J]. 数据分析与知识发现, 2024, 8(Z1): 20-30. |
Wang R J, Fan K M, Liu Z F, et al. A study on user querying behavior in generative artificial intelligence environment[J]. Data Analysis and Knowledge Discovery, 2024, 8(Z1): 20-30. | |
94 | 吴丹,孙国烨.生成式智能搜索结果可信度研究[J]. 中国图书馆学报, 2023, 49(6): 51-67. |
Wu D, Sun G Y. The credibility of the results of generative intelligent search[J]. Journal of Library Science in China, 2023, 49(6): 51-67. | |
95 | 赵建飞,陈挺,王小梅,等. 基于大语言模型知识自蒸馏的无标注专利关键信息抽取[J]. 数据分析与知识发现, 2024, 8(Z1): 133-143. |
Zhao J F, Chen T, Wang X M, et al. Extracting key information from unlabeled patents based on knowledge self-distillation in large language model[J]. Data Analysis and Knowledge Discovery, 2024, 8(Z1): 133-143. | |
96 | 张颖怡,章成志,周毅,等. 基于ChatGPT的多视角学术论文实体识别: 性能测评与可用性研究[J]. 数据分析与知识发现, 2023, 7(9): 12-24. |
Zhang Y Y, Zhang C Z, Zhou Y, et al. ChatGPT-based scientific paper entity recognition: Performance measurement and availability research[J]. Data Analysis and Knowledge Discovery, 2023, 7(9): 12-24. | |
97 | 鲍彤,章成志.ChatGPT中文信息抽取能力测评——以三种典型的抽取任务为例[J]. 数据分析与知识发现, 2023, 7(9): 1-11. |
Bao T, Zhang C Z. Extracting Chinese information with ChatGPT: An empirical study by three typical tasks[J]. Data Analysis and Knowledge Discovery, 2023, 7(9): 1-11. | |
98 | 蒋超,朱学芳.基于GPT-4数据增强与对比学习的多模态谣言检测研究[J]. 图书情报工作, 2024, 68(23):76-87. |
Jiang C, Zhu X F. Research on multimodal rumor detection based on GPT-4 text augmentation and contrastive learning[J]. Library and Information Service, 2024, 68(23): 76-87. | |
99 | 许钦亚,薛秋红,钱力,等. 融合ChatGPT数据增强的学术论文语步识别方法研究[J]. 图书情报工作, 2024, 68(17): 84-94. |
Xu Q Y, Xue Q H, Qian L, et al. Research on academic paper move recognition method with ChatGPT data augmentation[J]. Library and Information Service, 2024, 68(17): 84-94. | |
100 | 时宗彬,朱丽雅,乐小虬.基于本地大语言模型和提示工程的材料信息抽取方法研究[J]. 数据分析与知识发现, 2024, 8(7): 23-31. |
Shi Z B, Zhu L Y, Le X Q. Material information extraction based on local large language model and prompt engineering[J]. Data Analysis and Knowledge Discovery, 2024, 8(7): 23-31. | |
101 | 商锦铃,张建勇.基于ChatGPT和提示工程的查询式摘要数据集AMTQFSum构建研究[J]. 数据分析与知识发现, 2024, 8(Z1): 122-132. |
Shang J L, Zhang J Y. Constructing query-focused summarization dataset AMTQFSum based on ChatGPT and prompt engineering[J]. Data Analysis and Knowledge Discovery, 2024, 8(Z1): 122-132. | |
102 | 文森,钱力,胡懋地,等. 基于大语言模型的问答技术研究进展综述[J]. 数据分析与知识发现, 2024, 8(6): 16-29. |
Wen S, Qian L, Hu M D, et al. Review of research progress on question-answering techniques based on large language models[J]. Data Analysis and Knowledge Discovery, 2024, 8(6): 16-29. | |
103 | 张奎,王秀伟.生成式AI在传统文化传播中的媒介呈现与风险治理[J]. 图书情报知识, 2024, 41(4): 98-109. |
Zhang K, Wang X W. Media presentation and risk management of generative AI within the traditional culture communication[J]. Documentation,Information & Knowledge,2024, 41(4): 98-109. | |
104 | 陈锐,江奕辉.生成式AI的治理研究:以ChatGPT为例[J]. 科学学研究, 2024, 42(1): 21-30. |
Chen R, Jiang Y H. A study of the governance of generative AI: Taking ChatGPT as an example[J]. Studies in Science of Science, 2024, 42(1): 21-30. | |
105 | 关乐宁,徐凌验.通用目的技术视角下新一代人工智能的作用机理与治理体系[J]. 系统工程理论与实践, 2024, 44(1): 245-259. |
Guan L N, Xu L Y. The mechanism and governance system of the new generation of artificial intelligence from the perspective of general purpose technology[J]. Systems Engineering-Theory & Practice, 2024, 44(1): 245-259. | |
106 | 部彦君.人工智能发展下的权力扩散态势解析与挑战应对[J]. 科学学研究, 2024, DOI: 10.16192/j.cnki.1003-2053.20240329.002 . |
Bu Y J. Analysing the power diffusion situation under the development of artificial intelligence and responding to the challenges[J]. Studies in Science of Science, 2024,DOI: 10.16192/j.cnki.1003-2053.20240329.002 . | |
107 | 贾婷,陈强.三重逻辑下AI技术治理制度供给质效提升研究[J]. 科学学研究, 2024, 42(8): 1596-1606. |
Jia T, Chen Q. A study on the quality and efficiency improvement of AI technology governance institutional supply under triple logic[J]. Studies in Science of Science, 2024, 42(8): 1596-1606. | |
108 | Yan L, Sha L, Zhao L, et al. Practical and ethical challenges of large language models in education: A systematic scoping review[J]. British Journal of Educational Technology, 2024, 55(1): 1-22. |
109 | Shah C S, Mathur S, Vishnoi S K. Is ChatGPT enhancing youth’s Learning, engagement and satisfaction?[J]. Journal of Computer Information Systems, 2024, DOI: 10.1080/08874417.2024.2380698 . |
110 | Karatas F, Ericok B, Tanrikulu L. Reshaping curriculum adaptation in the age of artificial intelligence: Mapping teachers’AI-driven curriculum adaptation patterns[J]. British Educational Research Journal, 2024, DOI: 10.1002/berj.4068 . |
111 | Crompton H, Edmett A, Ichaporia N, et al. AI and english language teaching: Affordances and challenges[J]. British Journal of Educational Technology, 2024, 55(6): 2503-2529. |
112 | Korseberg L, Elken M. Waiting for the revolution: How higher education institutions initially responded to ChatGPT[J]. Higher Education, 2024, DOI: 10.1007/s10734-024-01256-4 . |
113 | Lee J, Hicke Y, Yu R, et al. The life cycle of large language models in education: A framework for understanding sources of bias[J]. British Journal of Educational Technology, 2024, 55(5): 1982-2002. |
114 | Elkefi S, Tounsi A, Kefi M A. Use of ChatGPT for education by engineering students in developing countries: A mixed-methods study[J]. Behaviour & Information Technology, 2024, DOI: 10.1080/0144929X.2024.2354428 . |
115 | Hu C, Liu B, Li X, et al. Knowledge-prompted ChatGPT: Enhancing drug trafficking detection on social media[J]. Information & Management, 2024, 61(6): 104010. |
116 | Samuel-Azran T, Manor I, Yitzhak E, et al. Analyzing AI bias: The discourse of terror and sport ahead of paris 2024 olympics[J]. American Behavioral Scientist, 2024, DOI: 10.1177/00027642241261265 . |
117 | Sivarajkumar S, Tam T Y C, Mohammad H A, et al. Extraction of sleep information from clinical notes of alzheimer’s disease patients using natural language processing[J]. Journal of the American Medical Informatics Association, 2024, 31(10): 2217-2227. |
118 | Yan C, Ong H H, Grabowska M E, et al. Large language models facilitate the generation of electronic health record phenotyping algorithms[J]. Journal of the American Medical Informatics Association, 2024, 31(9): 1994-2001. |
119 | Sushil M, Zack T, Mandair D, et al. A comparative study of large language model-based zero-shot inference and task-specific supervised classification of breast cancer pathology reports[J]. Journal of the American Medical Informatics Association, 2024, 31(10): 2315-2327. |
120 | Acharya A, Shrestha S, Chen A, et al. Clinical risk prediction using language models: Benefits and considerations[J]. Journal of the American Medical Informatics Association, 2024, 31(9): 1856-1864. |
121 | Kiuchi K, Otsu K, Hayashi Y. Psychological insights into the research and practice of embodied conversational agents, chatbots and social assistive robots: A systematic meta-review[J]. Behaviour & Information Technology, 2023, DOI: 10.1080/0144929X.2023.2286528 . |
122 | De Freitas J, Uguralp A K, Oguz-Uguralp Z, et al. Chatbots and mental health: Insights into the safety of generative AI[J]. Journal of Consumer Psychology, 2024, 34(3): 481-491. |
123 | Kharitonova K, Perez-Fernandez D, Gutierrez-Hernando J, et al. Incorporating evidence into mental health Q&A: A novel method to use generative language models for validated clinical content extraction[J]. Behaviour & Information Technology, 2024, DOI: 10.1080/0144929X.2024.2321959 . |
124 | Levin C, Naimi E, Saban M. Evaluating GenAI systems to combat mental health issues in healthcare workers: An integrative literature review[J]. International Journal of Medical Informatics, 2024, 191: 105566. |
125 | Mcgrath C, Farazouli A, Cerratto-Pargman T. Generative AI chatbots in higher education: A review of an emerging research area[J]. Higher Education, 2024, DOI: 10.1007/s10734-024-01288-w . |
126 | Ng D T K, Tan C W, Leung J K L. Empowering student self-regulated learning and science education through ChatGPT: A pioneering pilot study[J]. British Journal of Educational Technology, 2024, DOI: 10.1111/bjet.13454 . |
127 | Olszewski R, Watros K, Manczak M, et al. Assessing the response quality and readability of chatbots in cardiovascular health, oncology, and psoriasis: A comparative study[J]. International Journal of Medical Informatics, 2024, 190: 105562. |
128 | Wang Y-C, Chi O H, Saito H, et al. Conversational AI chatbots as counselors for hospitality employees[J]. International Journal of Hospitality Management, 2024, 122: 103861. |
129 | Oviedo-Trespalacios O, Peden A E, Cole-Hunter T, et al. The risks of using ChatGPT to obtain common safety-related information and advice[J]. Safety Science, 2023, 167: 106244. |
130 | Xiao Y, Yu S. Can ChatGPT replace humans in crisis communication? The effects of AI-mediated crisis communication on stakeholder satisfaction and responsibility attribution[J]. International Journal of Information Management, 2025, 80: 102835. |
131 | Salekpay F, van den Bergh J, Savin I. Comparing advice on climate policy between academic experts and ChatGPT[J]. Ecological Economics, 2024, 226: 108352. |
132 | Camilleri M A. Factors affecting performance expectancy and intentions to use ChatGPT: Using smartPLS to advance an information technology acceptance framework[J]. Technological Forecasting and Social Change, 2024, 201: 123247. |
133 | Triantafyllopoulos L, Feretzakis G, Tzelves L, et al. Evaluating the interactions of medical doctors with chatbots based on large language models: Insights from a nationwide study in the Greek healthcare sector using ChatGPT[J]. Computers in Human Behavior, 2024, 161: 108404. |
134 | Brewer J, Patel D, Kim D, et al. Navigating the challenges of generative technologies: Proposing the integration of artificial intelligence and blockchain[J]. Business Horizons, 2024, 67(5): 525-535. |
135 | Martins A, Londral A, Nunes I L, et al. Unlocking human-like conversations: Scoping review of automation techniques for personalized healthcare interventions using conversational agents[J]. International Journal of Medical Informatics, 2024, 185: 105385. |
136 | Llanes-Jurado J, Gomez-Zaragoza L, Minissi M E, et al. Developing conversational virtual humans for social emotion elicitation based on large language models[J]. Expert Systems with Applications, 2024, 246: 123261. |
137 | Akinseloyin O, Jiang X, Palade V. A question-answering framework for automated abstract screening using large language models[J]. Journal of the American Medical Informatics Association, 2024, 31(9):1939-1952. |
138 | Hu D, Liu B, Zhu X, et al. Zero-shot information extraction from radiological reports using ChatGPT[J]. International Journal of Medical Informatics, 2024, 183: 105321. |
139 | Shyr C, Grout R W, Kennedy N, et al. Leveraging artificial intelligence to summarize abstracts in lay language for increasing research accessibility and transparency[J]. Journal of the American Medical Informatics Association, 2024, 31(10): 2294-2303. |
140 | Li Y, Zhao J, Li M, et al. RefAI: A GPT-powered retrieval-augmented generative tool for biomedical literature recommendation and summarization[J]. Journal of the American Medical Informatics Association, 2024, 31(9): 2030-2039. |
141 | Yan S, Knapp W, Leong A, et al. Prompt engineering on leveraging large language models in generating response to inbasket messages[J]. Journal of the American Medical Informatics Association, 2024, 31(10): 2263-2270. |
142 | Glicksberg B S, Timsina P, Patel D, et al. Evaluating the accuracy of a state-of-the-art large language model for prediction of admissions from the emergency room[J]. Journal of the American Medical Informatics Association, 2024, 31(9):1921-1928. |
143 | Murugan M, Yuan B, Venner E, et al. Empowering personalized pharmacogenomics with generative AI solutions[J]. Journal of the American Medical Informatics Association, 2024, 31(6): 1356-1366. |
144 | Woodring J, Perez K, Ali-Gombe A. Enhancing privacy policy comprehension through privacify: A user-centric approach using advanced language models[J]. Computers & Security, 2024, 145: 103997. |
145 | He C, Wang Y, Hu J, et al. Collaborative vehicular threat sharing: A long-term contract-based incentive mechanism with privacy preservation[J]. IEEE Transactions on Intelligent Transportation Systems, 2024, DOI: 10.1109/TITS.2024.3461855 . |
146 | Hong S J. What drives AI-based risk information-seeking intent? Insufficiency of risk information versus (Un)certainty of AI chatbots[J]. Computers in Human Behavior, 2025, 162: 108460. |
147 | Aldasoro I, Armantier O, Doerr S, et al. The gen AI gender gap[J]. Economics Letters, 2024, 241: 111814. |
148 | Petit-Jean T, Gerardin C, Berthelot E, et al. Collaborative and privacy-enhancing workflows on a clinical data warehouse: An example developing natural language processing pipelines to detect medical conditions[J]. Journal of the American Medical Informatics Association, 2024, 31(6): 1280-1290. |
149 | Motoki F, Neto V P, Rodrigues V. More human than human: Measuring ChatGPT political bias[J]. Public Choice, 2024, 198(1-2): 3-23. |
150 | Foroughi B, Iranmanesh M, Ghobakhloo M, et al. Determinants of ChatGPT adoption among students in higher education: The moderating effect of trust[J]. Electronic Library, 2024, DOI: 10.1108/EL-12-2023-0293 . |
151 | Eom D, Newman T, Brossard D, et al. Societal guardrails for AI? Perspectives on what we know about public opinion on artificial intelligence[J]. Science and Public Policy, 2024, 51(5): 1004-1013. |
152 | Stahl B C, Eke D. The ethics of ChatGPT-exploring the ethical issues of an emerging technology[J]. International Journal of Information Management, 2024, 74: 102700. |
153 | Roberts J, Baker M, Andrew J. Artificial intelligence and qualitative research: The promise and perils of large language model (LLM) “assistance”[J]. Critical Perspectives on Accounting, 2024, 99: 102722. |
154 | Kankanhalli A. Peer review in the age of generative AI[J]. Journal of the Association for Information Systems, 2024, 25(1):76-84. |
155 | da Silva J A T A, Tsigaris P. Human-and AI-based authorship: Principles and ethics[J]. Learned Publishing, 2023, 36(3): 453-462. |
156 | Moreno A-I, Caminero T. Assessing climate-related disclosures of european banks through text mining[J]. Review of World Economics, 2024, DOI: 10.1007/s10290-024-00531-x . |
157 | Adiasto K. Sustainable employability: Sustainable employability in the age of generative artificial intelligence[J]. Group & Organization Management, 2024, 49(6): 1338-1348. |
158 | 刘锦. AIGC技术在国家审计中的应用[J]. 审计研究, 2024(4): 18-29. |
Liu J. Research on the application of AIGC technology in national audit[J]. Auditing Research, 2024(4): 18-29. | |
159 | 陈亚盛,蒋礼蔚,单敏,等.审计大模型的构建及应用研究——以员工违规经商办企业专项审计为例[J]. 审计研究, 2024(4): 139-149. |
Chen Y S, Jiang L W, Shan M, et al. Research on the construction and application of an audit large language model: A case study of a special audit of employees engaging in business or running enterprises against regulations [J]. Auditing Research, 2024(4): 139-149. | |
160 | 万钧.基于大语言模型的审计知识应用研究[J]. 审计研究,2024(5): 38-44+74. |
Wan J. Research on the application of audit knowledge based on large language models [J]. Auditing Research, 2024(5): 38-44+74. | |
161 | 程平, 喻畅, 王健俊. ChatGPT时代下基于深度自编码网络的企业内部审计智能预警——以往来款项审计为例[J]. 系统工程理论与实践,2024, 44(1): 316-337. |
Cheng P, Yu C, Wang J J. An intelligent risk warning model of enterprise internal audit based on deep autoencoder network in the ChatGPT era: Audit case of current accounts[J]. Systems Engineering-Theory & Practice, 2024, 44(1): 316-337. | |
162 | 曹志炜, 赵朗, 张琦琛. 人工智能技术本地化探索及在国家审计中的应用[J]. 审计研究, 2024(5): 26-37. |
Cao Z W, Zhao L, Zhang Q C. Localization of artificial intelligence and its application to government audit[J]. Auditing Research, 2024(5): 26-37. | |
163 | Tosyali H, Tosyali F, Coban-Tosyali E. Role of tourist-chatbot interaction on visit intention in tourism: The mediating role of destination image[J]. Current Issues in Tourism, 2023, DOI: 10.1080/13683500.2023.2288937 . |
164 | Ferraro C, Demsar V, Sands S, et al. The paradoxes of generative AI-enabled customer service: A guide for managers[J]. Business Horizons, 2024, 67(5): 549-559. |
165 | Osadchaya E, Marder B, Yule J A, et al. To ChatGPT, or not to ChatGPT: Navigating the paradoxes of generative AI in the advertising industry[J]. Business Horizons, 2024, 67(5): 571-581. |
166 | Feng C, Botha E, Pitt L. From HAL to GenAI: Optimizing chatbot impacts with CARE[J]. Business Horizons, 2024, 67(5): 537-548. |
167 | Carayannis E G, Dumitrescu R, Falkowski T, et al. Empowering SMEs “Harnessing the potential of Gen AI for resilience and competitiveness”[J]. IEEE Transactions on Engineering Management, 2024, 71: 14754-14774. |
168 | Tan K P S, Liu Y V, Litvin S W. ChatGPT and online service recovery: How potential customers react to managerial responses of negative reviews[J]. Tourism Management, 2025, 107: 105057. |
169 | Guttentag D A, Litvin S W, Teixeira R. Human vs. AI: Can ChatGPT improve tourism product descriptions?[J]. Current Issues in Tourism, 2024, DOI: 10.1016/j.frl.2024.105433 . |
170 | Ali F, Yasar B, Ali L, et al. Antecedents and consequences of travelers’trust towards personalized travel recommendations offered by ChatGPT[J]. International Journal of Hospitality Management, 2023, 114: 103588. |
171 | Kim M J, Kang S E, Hall C M, et al. Unveiling the impact of ChatGPT on travel consumer behaviour: Exploring trust, attribute, and sustainable-tourism action[J]. Current Issues in Tourism, 2024, DOI: 10.1080/13683500.2024.2355556 . |
172 | Christensen J, Hansen J M, Wilson P. Understanding the role and impact of Generative Artificial Intelligence (AI) hallucination within consumers’tourism decision-making processes[J]. Current Issues in Tourism, 2024, DOI: 10.1080/13683500.2023.2300032 . |
173 | Gursoy D, Li Y, Song H. ChatGPT and the hospitality and tourism industry: An overview of current trends and future research directions[J]. Journal of Hospitality Marketing & Management, 2023, 32(5): 579-592. |
174 | Sigala M, Ooi K B, Tan G W H, et al. Understanding the impact of ChatGPT on tourism and hospitality: Trends, prospects and research agenda[J]. Journal of Hospitality and Tourism Management, 2024, 60: 384-390. |
175 | Dogru T, Line N, Hanks L, et al. The implications of generative artificial intelligence in academic research and higher education in tourism and hospitality[J]. Tourism Economics, 2024, 30(5): 1083-1094. |
176 | Urbani R, Ferreira C, Lam J. Managerial framework for evaluating AI chatbot integration: Bridging organizational readiness and technological challenges[J]. Business Horizons, 2024, 67(5): 595-606. |
177 | Li S, Han R, Fu T, et al. Tourists’behavioural intentions to use ChatGPT for tour route planning: An extended TAM model including rational and emotional factors[J]. Current Issues in Tourism, 2024, DOI: 10.1080/13683500.2024.2355563 . |
178 | Solomovich L, Abraham V. Exploring the influence of ChatGPT on tourism behavior using the technology acceptance model[J]. Tourism Review, 2024, DOI: 10.1108/TR-10-2023-0697 . |
179 | Mogaji E, Viglia G, Srivastava P, et al. Is it the end of the technology acceptance model in the era of generative artificial intelligence?[J]. International Journal of Contemporary Hospitality Management, 2024, 36(10): 3324-3339. |
180 | Clegg M, Hofstetter R, de Bellis E, et al. Unveiling the mind of the machine[J]. Journal of Consumer Research, 2024, 51(2): 342-361. |
181 | Pham H C, Duong C D, Nguyen G K H. What drives tourists’continuance intention to use ChatGPT for travel services? A stimulus-organism-response perspective[J]. Journal of Retailing and Consumer Services, 2024, 78: 103758. |
182 | Choi M, Choi Y, Bangura E, et al. ChatGPT or online review: Which is a better determinant of customers’trust in airbnb listings and stay intention?[J]. International Journal of Hospitality Management, 2024, 122: 103852. |
183 | Phillips J, Robie C. Hacking the perfect score on high-stakes personality assessments with generative AI[J]. Personality and Individual Differences, 2024, 231: 112840. |
184 | Budhwar P, Chowdhury S, Wood G, et al. Human resource management in the age of generative artificial intelligence: Perspectives and research directions on ChatGPT[J]. Human Resource Management Journal, 2023, 33(3): 606-659. |
185 | Aguinis H, Beltran J R, Cope A. How to use generative AI as a human resource management assistant[J]. Organizational Dynamics, 2024, 53(1): 101029. |
186 | Chowdhury S, Budhwar P, Wood G. Generative artificial intelligence in business: Towards a strategic human resource management framework[J]. British Journal of Management, 2024, 35(4): 1680-1691. |
187 | Sorosrungruang T, Ameen N, Hackley C. How real is real enough? Unveiling the diverse power of generative AI-enabled virtual influencers and the dynamics of human responses[J]. Psychology & Marketing, 2024, 41(12): 3124-3143. |
188 | Ferraro C, Sands S, Zubcevic-Basic N, et al. Diversity in the digital age: How consumers respond to diverse virtual influencers[J]. International Journal of Advertising, 2024, 43(8): 1342-1365. |
189 | Kim I, Ki C W, Lee H, et al. Virtual influencer marketing: Evaluating the influence of virtual influencers' form realism and behavioral realism on consumer ambivalence and marketing performance[J]. Journal of Business Research, 2024, 176: 114611. |
190 | Wong I A, Lian Q L, Sun D. Autonomous travel decision-making: An early glimpse into ChatGPT and generative AI[J]. Journal of Hospitality and Tourism Management, 2023, 56: 253-263. |
191 | Andrieux P, Johnson R D, Sarabadani J, et al. Ethical considerations of generative AI-enabled human resource management[J]. Organizational Dynamics, 2024, 53(1): 101032. |
192 | Oswick C. Generative artificial intelligence and generative conversations: Contrasting futures for organizational change?[J]. Journal of Applied Behavioral Science, 2024, 60(2): 225-229. |
193 | Pagani M, Wind Y. Unlocking marketing creativity using artificial intelligence[J]. Journal of Interactive Marketing, 2024, DOI: 10.1177/10949968241265855 . |
194 | Kronblad C, Jonsson A, Pemer F. Generative AI beyond the hype-new technologies in the face of organizing and organizations[J]. Journal of Applied Behavioral Science, 2024, 60(4):623-630. |
195 | Magni F, Park J, Chao M M. Humans as creativity gatekeepers: Are we biased against AI creativity?[J]. Journal of Business and Psychology, 2024, 39(3): 643-656. |
196 | Abdelhalim E, Anazodo K S, Gali N, et al. A framework of diversity, equity, and inclusion safeguards for chatbots[J]. Business Horizons, 2024, 67(5): 487-498. |
197 | Campbell C, Sands S, McFerran B, et al. Diversity representation in advertising[J]. Journal of the Academy of Marketing Science, 2023, DOI: 10.1007/s11747-023-00994-8 . |
198 | Lee G, Kim H-Y. Algorithm fashion designer? Ascribed mind and perceived design expertise of AI versus human[J]. Psychology & Marketing, 2025, 42(1):255-273. |
199 | Haupt M, Freidank J, Haas A. Consumer responses to human-AI collaboration at organizational frontlines: Strategies to escape algorithm aversion in content creation[J]. Review of Managerial Science, 2024, DOI: 10.1007/s11846-024-00748-y . |
200 | Shankar V. Managing the twin faces of AI: A commentary on Is AI changing the world for better or worse?[J]. Journal of Macromarketing, 2024, 44(4): 892-899. |
201 | 向芝谊, 张馨元. 生成式人工智能赋能税收治理现代化研究[J]. 税务研究, 2023(12): 66-70. |
Xiang Z Y, Zhang X Y. Research on the empowerment of generative artificial intelligence for the modernization of tax governance[J]. Taxation Research, 2023(12): 66-70. | |
202 | 杨森平, 余丽莎. 以ChatGPT为代表的生成式人工智能对税收管理带来的机遇和挑战[J]. 税务研究, 2023(6): 16-20. |
Yang S P, Yu L S. Opportunities and challenges brought by ChatGPT-based generative AI to tax administration[J]. Taxation Research, 2023(6): 16-20. | |
203 | 国家税务总局深圳市税务局课题组, 李伟, 王晓明, 等. 以ChatGPT为代表的生成式人工智能在税务领域应用的思考和建议[J]. 税务研究, 2023(6): 5-9. |
Research Group of Shenzhen Tax Service State Taxation Administration, Li W, Wang X M,et al. Reflection and suggestions on the application of ChatGPT-based generative artificial intelligence in tax field[J]. Taxation Research, 2023(6): 5-9. | |
204 | 贾楠, 鲁钰锋. 运用以ChatGPT为代表的生成式人工智能提升税法遵从度的几点思考[J]. 税务研究, 2023(6): 10-15. |
Jia N, Lu Y F. Some thoughts on use of ChatGPT-baed generative AI for improvement of tax compliance[J]. Taxation Research, 2023(6): 10-15. | |
205 | 程兵. 以ChatGPT为代表的大语言模型打开了经济学和其他社会科学研究范式的巨大新空间[J]. 计量经济学报, 2023,3(3):589-614. |
Cheng B. Artificial intelligence generative content (AIGC) including ChatGPT opens a new big paradigm space of economics and social science research[J]. China Journal of Econometrics, 2023, 3(3): 589-614. | |
206 | 洪永淼, 汪寿阳. ChatGPT与大模型将对经济学研究范式产生什么影响?[J]. 计量经济学报, 2024, 4(1): 1-25. |
Hong Y M, Wang S Y. How will ChatGPT and large models influence the research paradigm in economics?[J]. China Journal of Econometrics, 2024, 4(1): 1-25. | |
207 | Smales L A. Classification of RBA monetary policy announcements using ChatGPT[J]. Finance Research Letters, 2023, 58: 104514. |
208 | Ardekani A M, Bertz J, Bryce C, et al. FinSentGPT: A universal financial sentiment engine?[J]. International Review of Financial Analysis, 2024, 94: 103291. |
209 | Ko H, Lee J. Can ChatGPT improve investment decisions? From a portfolio management perspective[J]. Finance Research Letters, 2024, 64: 105433. |
210 | Saggu A, Ante L. The influence of ChatGPT on artificial intelligence related crypto assets: Evidence from a synthetic control analysis[J]. Finance Research Letters, 2023, 55: 103993. |
211 | Almeida J, Gonçalves T C. The AI revolution: Are crypto markets more efficient after ChatGPT 3?[J]. Finance Research Letters, 2024, 66: 105608. |
212 | Ma F, Lyu Z, Li H. Can ChatGPT predict Chinese equity premiums?[J]. Finance Research Letters, 2024, 65: 105631. |
213 | Alonso-Robisco A, Carbó J M. Analysis of CBDC narrative by central banks using large language models[J]. Finance Research Letters, 2023, 58: 104643. |
[1] | 杨善林, 李霄剑, 莫杭杰, 张强, 唐孝安. 科技战略供应链的基本特征与关键科学问题[J]. 中国管理科学, 2025, 33(1): 1-13. |
[2] | 陈晓红, 许冠英, 徐雪松, 易国栋, 唐加乐, 刘天朔. 新质生产力视域下管理科学变革:内涵特征、现实挑战与发展路径[J]. 中国管理科学, 2025, 33(1): 14-21. |
[3] | 杨丹, 李倩, 李思飞, 龚诗阳. 管理语言学视角下的“管理+语言”研究:演进、评述与展望[J]. 中国管理科学, 2025, 33(1): 153-164. |
[4] | 刘伟华, 李哲, 龙尚松, 余玉刚, 霍宝锋, 梁艳杰. 平台供应链管理:新挑战与新机遇[J]. 中国管理科学, 2025, 33(1): 165-181. |
[5] | 刘诗炎, 曾冠文, 睢少博, 段金肖, 陈君豪, 陈喜群, 葛显龙, 李想, 欧阳敏, 邵虎, 吴俊, 许项东, 张博文, 田琼, 吴建军, 李大庆. 复杂性视角下的城市交通系统健康管理理论及研究进展[J]. 中国管理科学, 2025, 33(1): 182-194. |
[6] | 王海燕, 盛昭瀚. 大数据驱动的复杂系统管理情景建模:技术与流程[J]. 中国管理科学, 2025, 33(1): 22-33. |
[7] | 朱庆华, 陈宇潇, 陈国玉. 循环供应链管理研究发展与展望[J]. 中国管理科学, 2025, 33(1): 221-231. |
[8] | 肖勇波, 赵翠, 林群庚, 张继红. |
[9] | 谭旭光, 梁昌勇, 陈增明. 六基态产品竞争战略模型研究[J]. 中国管理科学, 2025, 33(1): 335-344. |
[10] | 吴鹏, 王琦, 霍红, 刘作仪. 韧性城市运营管理:新兴研究热点及其进展[J]. 中国管理科学, 2025, 33(1): 34-51. |
[11] | 吴靓雯, 镇璐. 面向生产运作管理优化的数学规划算法研究[J]. 中国管理科学, 2025, 33(1): 345-355. |
[12] | 郭宇宽, 张宏云, 冯耕中. 自在、自证到自为的中国本土管理学[J]. 中国管理科学, 2025, 33(1): 52-61. |
[13] | 李建平, 徐伟宣, 吴登生. 风险科学:一门新的跨学科科学[J]. 中国管理科学, 2025, 33(1): 98-110. |
[14] | 李勇,陈元,于辉. 缓解牛鞭效应的新途径:人机协同的智慧决策机器人[J]. 中国管理科学, 2024, 32(9): 113-120. |
[15] | 朱鸿伟,田丽君,江晓岚. 多模式出行场景下差异化激励绿色出行策略研究[J]. 中国管理科学, 2024, 32(9): 131-141. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|