主管:中国科学院
主办:中国优选法统筹法与经济数学研究会
   中国科学院科技战略咨询研究院

中国管理科学 ›› 2025, Vol. 33 ›› Issue (3): 118-127.doi: 10.16381/j.cnki.issn1003-207x.2022.1888cstr: 32146.14/j.cnki.issn1003-207x.2022.1888

• • 上一篇    下一篇

基于前沿面修正的DEA-Malmquist指数方法研究

马占新1(), 苏日古嘎2   

  1. 1.内蒙古大学经济管理学院,内蒙古 呼和浩特 010021
    2.内蒙古财经大学经济学院,内蒙古 呼和浩特 010070
  • 收稿日期:2022-08-28 修回日期:2022-12-23 出版日期:2025-03-25 发布日期:2025-04-07
  • 通讯作者: 马占新 E-mail:em_mazhanxin@imu.edu.cn
  • 基金资助:
    国家自然科学基金项目(72161031);内蒙古自然科学基金项目(2021MS07025)

Study of DEA-Malmquist Index Method Based on Frontier Surface Modification

Zhanxin Ma1(), guga Suri2   

  1. 1.School of Economics and Management,Inner Mongolia University,Hohhot 010021,China
    2.School of Economics,Inner Mongolia University of Finance and Economics,Hohhot 010070,China
  • Received:2022-08-28 Revised:2022-12-23 Online:2025-03-25 Published:2025-04-07
  • Contact: Zhanxin Ma E-mail:em_mazhanxin@imu.edu.cn

摘要:

DEA-Malmquist指数方法的独特优势使其在全要素生产率分析中得到广泛应用。然而,本文研究发现,应用DEA-Malmquist指数方法给出的测算结果可能存在整体性偏差。为解决这一问题,本文先解析了DEA-Malmquist指数方法的测算结果存在偏差的原因,并给出了相应的识别方法。然后,利用一种前沿面修复技术,给出了能够有效修正测算偏差的修正DEA-Malmquist指数模型。最后,使用本文提出的模型分析了2005-2017年中国中部地区第三产业全要素生产率。研究结果显示,本文提出的模型既可以有效修正DEA-Malmquist指数方法的测算偏差,还可以解决模型无可行解的问题。

关键词: DEA-Malmquist指数, 全要素生产率, 数据包络分析, 数据短尾现象, 数据短首现象

Abstract:

The DEA-Malmquist index method combines the DEA method with the Malmquist index method, which does not need to set the specific form of the production function in advance, and is particularly suitable for the analysis of multi-input and multi-output production systems. Thus, this method has been widely used in total factor productivity measurement. However, for input-growth production systems, the missing data for some smaller or larger parts of inputs can cause the systematic bias in the DEA-Malmquist index measurement results. Therefore, from the perspective of production possibility set modification, it is important to study the techniques to modify and supplement missing data to modify the measurement bias of the DEA-Malmquist index method.In general, it is common that the input-output data of decision-making units (DMUs) keeps increasing with the continuous economic and social development. Moreover, the DEA-Malmquist index method is constructed based on the distance function, and the measure of the distance function has to be based on the C2R model, BC2 model and their corresponding inter-period comparison model. Therefore, when comparing DMUs across periods, there may be the cases of missing data for smaller inputs in the current period (data short tails) and missing data for larger inputs in the previous period (data short heads). Among them, the missing data for smaller inputs will cause the problem of non-feasible solutions for the DEA-Malmquist index method, while the missing data for lager inputs will directly cause the overall bias of the calculation results of DEA-Malmquist index method. Therefore, in order to ensure the accuracy of the calculation results of DEA-Malmquist index method, it is necessary to construct a frontier restoration technique to modify the production possibility set in the traditional DEA-Malmquist index method.Through the empirical analysis, it is found that the method proposed in this paper can not only effectively modify the measurement bias of the traditional DEA-Malmquist index method, but also solve the problem that there is no feasible solution. In addition, the proposed method in this paper provides a new idea for the theoretical research of DEA-Malmquist index method, and also provides an effective tool for the measurement of total factor productivity.

Key words: DEA-Malmquist Index, total factor productivity, data envelopment analysis, short tail phenomenon of data, short head phenomenon of data

中图分类号: