主管:中国科学院
主办:中国优选法统筹法与经济数学研究会
   中国科学院科技战略咨询研究院

中国管理科学 ›› 2025, Vol. 33 ›› Issue (8): 100-111.doi: 10.16381/j.cnki.issn1003-207x.2022.2620

• • 上一篇    

重大疫情下社区韧性治理能力深度迁移学习评价方法

陈闻鹤1, 常志朋2, 周涵婷3,4, 程龙生3(), 文卜玉5   

  1. 1.安徽师范大学经济管理学院,安徽 芜湖 241000
    2.安徽工业大学商学院,安徽 马鞍山 243000
    3.南京理工大学经济管理学院,江苏 南京 210094
    4.兰卡斯特大学工程学院,英国 兰卡斯特 LA1 4YW
    5.辽东学院信息工程学院,辽东 丹东 118000
  • 收稿日期:2022-12-06 修回日期:2023-05-08 出版日期:2025-08-25 发布日期:2025-09-10
  • 通讯作者: 程龙生 E-mail:cheng_longsheng@163.com
  • 基金资助:
    安徽省哲学社会科学规划基金重点项目(AHSKZ2020D02)

A Deep Transfer Learning Evaluation Method for Community Resilience Governance Capacity under Major Epidemics

Wenhe Chen1, Zhipeng Chang2, Hanting Zhou3,4, Longsheng Cheng3(), Buyu Wen5   

  1. 1.School of Economics and Management,Anhui Normal University,Wuhu 241000,China
    2.School of Business,Anhui University of Technology,Maanshan 243000,China
    3.School of Economics & Management,Nanjing University of Science & Technology,Nanjing 219004,China
    4.Department of Engineering,Lancaster University,LA1 4YW Lancaster,UK
    5.School of Information Engineering,Eastern Liaoning University,Dandong 118000,China
  • Received:2022-12-06 Revised:2023-05-08 Online:2025-08-25 Published:2025-09-10
  • Contact: Longsheng Cheng E-mail:cheng_longsheng@163.com

摘要:

在面对重大疫情的基层应急管理体系构建中,社区韧性治理能力对稳定社区居民情绪、组织社区生活、增强风险抵抗力具有重要作用。在大数据背景下,重大疫情下的社区韧性治理能力评价模型存在样本量不足、部分样本评价困难、特征提取依赖人工经验、评价模型最优参数确定难等问题,导致现有机器学习评价方法难以做出准确评价。因此,本文提出结合数据增强和深度迁移学习方法的新型评价方法,该方法使用峰值聚类改进自适应过采样方法(DPAS)和迁移学习方法(TL)从数据增扩和“预训练-微调”两方面提升模型在样本数量不足时的训练效能;采用GoogLeNet网络通过Inception模块自动提取评价指标用于样本识别,并引入多分类焦点损失(MFL)函数聚焦难分类样本损失结果;同时,利用多目标黏菌优化算法(MOSMA)优化超参数,进一步提升模型性能。实例数据验证表明,本文提出方法的评价性能高于其他传统评价方法,通过消融实验和敏感性分析证明了其结构的合理性。

关键词: 迁移学习(TL), 多目标黏菌优化算法(MOSMA), 数据增强, 社区韧性治理, 重大疫情

Abstract:

The capacity assessment model of community resilience governance is conducive to establishing the long-term mechanism for grassroots prevention and control under major epidemics. However, there are some problems with community governance capacity assessment models. Firstly, the numbers of samples collected are usually hundreds or thousands, which belongs to small samples in machine learning or deep learning, easily leading to underfitting and overfitting of model training. Secondly, the samples are divided into simple and difficult samples, and the traditional assessment models do not have enough ability to recognize difficult samples. Then, feature extraction methods rely on manual experience, which are difficult to learn how experts select features for assessment. Finally, the parameters of the deep learning models rely on expert experience, which are challenging to select the optimal parameters scientifically. The above problems affect the performance of model in evaluating the capacity of community resilience governance.Therefore, the model in the following ways is improved. Firstly, the model is augmented with data using density peak clustering to improve adaptive oversampling (DPAS) to treat the target class as a minority class sample and the remaining other classes as the majority class, for augmenting the sample size of the data. Secondly, Googlenet using transfer learning (TL) is improved to increase the effectiveness of feature extraction under small samples conditions. In addition, multi-class focal loss(MFL) is used instead of multi-class cross-entropy loss(MCL)is used to enhance the focus on difficult samples in model training, for improving the identification of difficult samples. Meanwhile, the hyperparameters of the optimized model using multi-objective slime mould algorithm (MOSMA) are guaranteed to be optimized under multi-objective conditions. Finally, the model performance is validated using the collected community sample dataset, comparing with different baseline models, multi-objective optimization methods and data enhancement models. Experiments demonstrate that the proposed model outperforms the other models. The structure and parameter settings are justified using ablation experiments and sensitivity analysis.A novel idea about community resilience governance capacity is provided, which can be directly applied to community resilience governance capacity under major epidemics. In addition, the results of this study have practical implications that can be extended to other areas of resilient governance assessment.

Key words: transfer learning (TL), multi-objective slime mould algorithm (MOSMA), data augmentation, community resilience governance, major epidemic

中图分类号: