中国管理科学 ›› 2023, Vol. 31 ›› Issue (2): 51-62.doi: 10.16381/j.cnki.issn1003-207x.2020.1136
杨坤1, 魏宇2, 李守伟1, 何建敏1
收稿日期:
2020-06-14
修回日期:
2020-09-23
出版日期:
2023-02-20
发布日期:
2023-02-28
通讯作者:
魏宇(1975-),男(汉族),四川攀枝花人,云南财经大学金融学院,教授,博士,研究方向:金融风险管理,Email:weiyusy@126.com.
E-mail:weiyusy@126.com
基金资助:
YANG Kun1, WEI Yu2, LI Shou-wei1, HE Jian-min1
Received:
2020-06-14
Revised:
2020-09-23
Online:
2023-02-20
Published:
2023-02-28
Contact:
魏宇
E-mail:weiyusy@126.com
摘要: 地缘政治突发事件对于原油市场的重要影响早已得到广泛认可,但尚未有直接证据表明地缘政治风险是我国原油期货市场的驱动因素。引入基于新闻报道的地缘政治风险(geopolitical risk,GPR)指数,使用极大重叠离散小波变换与非参数分位数因果检验方法,详细讨论了不同时间尺度与原油条件分布下,地缘政治风险对我国原油期货收益与波动的非线性影响。在此基础上,利用上海原油期货5分钟高频交易数据计算7类原油日内波动,进一步分析地缘政治风险对原油高频价格动态的作用。研究发现:(1)地缘政治风险在频域视角下对我国原油期货收益具有显著影响,而原油价波动同时在时频域范围内对地缘政治风险变化表现出明显的响应。(2)地缘政治风险对我国原油期货已实现波动率和3类跳跃性波动均具备可预测性。(3)地缘政治风险对原油期货市场的影响具有明显的非对称特征,具体而言,对于原油收益的冲击更多地表现在极端分位点,并且对于原油收益和波动的长期影响均大于短期冲击。
中图分类号:
杨坤, 魏宇, 李守伟, 何建敏. 地缘政治风险是中国原油期货市场的驱动因素吗?——基于小波多分辨的非参数分位数因果检验方法[J]. 中国管理科学, 2023, 31(2): 51-62.
YANG Kun, WEI Yu, LI Shou-wei, HE Jian-min. Does Geopolitical Risk Drive China’s Crude Oil Futures Market? A Wavelet-based Nonparametric Causality-in-Quantiles Test[J]. Chinese Journal of Management Science, 2023, 31(2): 51-62.
[1]Li Xiafei, Wei Yu. The dependence and risk spillover between crude oil market and China stock market: New evidence from a variational mode decomposition-based copula method[J]. Energy Economics, 2018, 74: 565-581. [2]Ji Qiang, Liu Bingyue, Fan Ying. Risk dependence of CoVaR and structural change between oil prices and exchange rates: A time-varying copula model[J]. Energy Economics, 2019, 77: 80-92. [3]Ji Qiang, Bahloul W, Geng Jiangbo, et al. Trading behaviour connectedness across commodity markets: Evidence from the hedgers’ sentiment perspective[J]. Research in International Business and Finance, 2020, 52: 101114. [4]刘映琳, 刘永辉, 鞠卓. 国际原油价格波动对中国商品期货的影响——基于多重相关性结构断点的分析[J]. 中国管理科学, 2019, 27(2): 31-40.Liu Yinglin, Liu Yonghui, Ju Zhuo. The impact of international crude oil price fluctuation on Chinese commodity futures: Based on the correlation structure breakpoint model[J]. Chinese Journal of Management Science, 2019, 27(2): 31-40. [5]Liu Zhenhua, Ding Zhihua, Zhai Pengxiang, et al. Revisiting the integration of China into the world crude oil market: The role of structural breaks[J]. Frontiers in Energy Research, 2019, 7: 1-17. [6]Yang Jian, Zhou Yinggang. Return and volatility transmission between China’s and international crude oil futures markets: A first look[J]. Journal of Futures Markets, 2020, 40(6): 860-884. [7]张礼卿. 地缘政治风险加大, 国际原油价格大起大落[J]. 国际金融研究, 2019(1): 11.Zhang Liqing. The international crude oil price fluctuates wildly as geopolitical risk increases[J]. Studies of International Finance, 2019(1): 11. [8]Cunado J, Gupta R, Lau C K M, et al. Time-varying impact of geopolitical risks on oil prices[J]. Defence and Peace Economics, 2019: 1-15. [9]Liu Jing, Ma Feng, Tang Yingkai, et al. Geopolitical risk and oil volatility: a new insight[J]. Energy Economics, 2019, 84: 104548. [10]Park C, Park S. Rare disaster risk and exchange rates: An empirical investigation of South Korean exchange rates under tension between the two Koreas[J]. Finance Research Letters, 2019: 101314. [11]Gozgor G, Lau C K M, Sheng X, et al. The role of uncertainty measures on the returns of gold[J]. Economics Letters, 2019, 185: 108680. [12]Aysan A F, Demir E, Gozgor G, et al. Effects of the geopolitical risks on Bitcoin returns and volatility[J]. Research in International Business and Finance, 2019, 47: 511-518. [13]Gupta R, Suleman T, Wohar M E. The role of time-varying rare disaster risks in predicting bond returns and volatility[J]. Review of Financial Economics, 2019, 37(3): 327-340. [14]Caldara D, Iacoviello M. Measuring geopolitical risk[J]. FRB International Finance Discussion Paper, 2018, (1222). [15]Antonakakis N, Gupta R, Kollias C, et al. Geopolitical risks and the oil-stock nexus over 1899-2016[J]. Finance Research Letters, 2017, 23: 165-173. [16]Demirer R, Gupta R, Ji Qiang, et al. Geopolitical risks and the predictability of regional oil returns and volatility[J]. OPEC Energy Review, 2019, 43(3): 342-361. [17]Bouoiyour J, Selmi R, Hammoudeh S, et al. What are the categories of geopolitical risks that could drive oil prices higher? Acts or threats?[J]. Energy Economics, 2019, 84: 104523. [18]Plakandaras V, Gupta R, Wong W K. Point and density forecasts of oil returns: The role of geopolitical risks[J]. Resources Policy, 2019, 62: 580-587. [19]Mei Dexiang, Ma Feng, Liao Yin, et al. Geopolitical risk uncertainty and oil future volatility: Evidence from MIDAS models[J]. Energy Economics, 2020, 86: 104624. [20]Alqahtani A, Taillard M. Global energy and geopolitical risk: Behavior of oil markets[J]. International Journal of Energy Sector Management, 2019, 14(2): 358-371. [21]Aloui C, Hamida H B. Oil-stock Nexus in an Oil-rich country: does geopolitical risk matter in terms of investment horizons?[J]. Defence and Peace Economics, 2019: 1-21. [22]Li Boying, Chang Chunping, Chu Yin, et al. Oil prices and geopolitical risks: what implications are offered via multi-domain investigations?[J]. Energy & Environment, 2020, 31(3): 492-516. [23]王鹏, 魏宇. 经典金融理论的困境与金融物理学研究的兴起[J]. 管理科学学报, 2014, 17(9): 40-55.Wang Peng, Wei Yu. Dilemma of classical financial theory and the rising of econophysics[J]. Journal of Management Sciences in China, 2014, 17(9): 40-55. [24]杨子晖, 陈里璇, 陈雨恬. 经济政策不确定性与系统性金融风险的跨市场传染——基于非线性网络关联的研究[J]. 经济研究, 2020, 55(1): 65-81.Yang Zihui, Chen Lixuan, Chen Yutian. Cross-market contagion of economic policy uncertainty and systemic financial risk: A nonlinear network connectedness analysis[J]. Economic Research Journal, 2020, 55(1): 65-81. [25]张大永, 姬强. 中国原油期货动态风险溢出研究[J]. 中国管理科学, 2018, 26(11): 42-49.Zhang Dayong, Ji Qiang. Studies on the dynamic risk spillovers for China’s crude oil futures[J]. Chinese Journal of Management Science, 2018, 26(11): 42-49. [26]宫锡强. 财政教育支出对城乡居民收入差距的影响研究——基于十分位点的分层省级数据分析[J]. 云南财经大学学报, 2020, 36(4): 64-71.Gong Xiqiang. Research on the influence of fiscal education expenditure on urban-rural income gap: Stratified provincial data analysis based on decile score[J]. Journal of Yunnan University of Finance and Economics, 2020, 36(4): 64-71. [27]赵秋成, 马洪旭. 靠“关系”还是靠“学历”?——私营企业员工薪酬中的亲属关联效应和文凭效应研究[J]. 云南财经大学学报, 2020, 36(4): 101-112.Zhao Qiucheng, Ma Hongxu. Depending on “guanxi” or on “education”? A study on the effect of kinship and diploma in the compensation of employees in private enterprises[J]. Journal of Yunnan University of Finance and Economics, 2020, 36(4): 101-112. [28]Nishiyama Y, Hitomi K, Kawasaki Y, et al. A consistent nonparametric test for nonlinear causality: specification in time series regression[J]. Journal of Econometrics, 2011, 165(1): 112-127. [29]Jeong K, Hrdle W K, Song S. A consistent nonparametric test for causality in quantile[J]. Econometric Theory, 2012, 28(4): 861-887. [30]Balcilar M, Gupta R, Kyei C, et al. Does economic policy uncertainty predict exchange rate returns and volatility? Evidence from a nonparametric causality-in-quantiles test[J]. Open Economies Review, 2016, 27(2): 229-250. [31]Balcilar M, Bekiros S, Gupta R. The role of news-based uncertainty indices in predicting oil markets: a hybrid nonparametric quantile causality method[J]. Empirical Economics, 2017, 53(3): 879-889. [32]Das D, Kumar S B, Tiwari A K, et al. On the relationship of gold, crude oil, stocks with financial stress: a causality-in-quantiles approach[J]. Finance Research Letters, 2018, 27: 169-174. [33]Demirer R, Gupta R, Suleman T, et al. Time-varying rare disaster risks, oil returns and volatility[J]. Energy Economics, 2018, 75: 239-248. [34]Jena S K, Tiwari A K, Hammoudeh S, et al. Distributional predictability between commodity spot and futures: Evidence from nonparametric causality-in-quantiles tests[J]. Energy Economics, 2019, 78: 615-628. [35]Jiang Yonghong, Feng Qidi, Mo Bin, et al. Visiting the effects of oil price shocks on exchange rates: Quantile-on-quantile and causality-in-quantiles approaches[J]. The North American Journal of Economics and Finance, 2020, 52: 101161. [36]Brandt M W, Gao L. Macro fundamentals or geopolitical events? A textual analysis of news events for crude oil[J]. Journal of Empirical Finance, 2019, 51: 64-94. [37]王书平, 朱艳云. 基于多尺度分析的小麦价格预测研究[J]. 中国管理科学, 2016, 24(5): 85-91.Wang Shuping, Zhu Yanyun. Forecasting of wheat price based on multi-scale analysis[J]. Chinese Journal of Management Science, 2016, 24(5): 85-91. [38]黄书培, 安海忠, 高湘昀, 等. 供给与需求驱动型原油价格变动对股票市场的多时间尺度影响研究[J]. 中国管理科学, 2018, 26(11): 62-73.Huang Shupei, An Haizhong, Gao Xiangyun, et al. Multiscale impacts of oil price fluctuations driven by the demand and supply on the stock market[J]. Chinese Journal of Management Science, 2018, 26(11): 62-73. [39]Wang Gangjin, Xie Chi, Chen Shou. Multiscale correlation networks analysis of the US stock market: a wavelet analysis[J]. Journal of Economic Interaction and Coordination, 2017, 12(3): 561-594. [40]Chen Xiuwen, Sun Xiaolei, Wang Jun. Dynamic spillover effect between oil prices and economic policy uncertainty in BRIC countries: a wavelet-based approach[J]. Emerging Markets Finance and Trade, 2019, 55(12): 2703-2717. [41]Dai Xingyu, Wang Qunwei, Zha Donglan, et al. Multi-scale dependence structure and risk contagion between oil, gold, and US exchange rate: a wavelet-based vine-copula approach[J]. Energy Economics, 2020, 88: 104774. [42]Liu Chang, Li Jianping, Sun Xiaolei, et al. Multi-scale interactions between Turkish lira exchange rates and sovereign CDS in Europe and Asia[J]. Applied Economics Letters, 2020: 1-9. [43]胡亚楠. 短期资本流动与宏观经济波动[J]. 云南财经大学学报, 2019(8): 24-33.Hu Yanan. Short-term capital flow and macroeconomic fluctuation[J]. Journal of Yunnan University of Finance and Economics, 2019(8): 24-33. [44]淳伟德, 陈王, 潘攀. 典型事实约束下的上海燃油期货市场动态VaR测度研究[J]. 中国管理科学, 2013, 21(2): 24-31.Chun Weide, Chen Wang, Pan Pan. A study on dynamic VaR predicting models for oil futures market of Shanghai[J]. Chinese Journal of Management Science, 2013, 21(2): 24-31. [45]隋新, 何建敏, 李亮. 时变视角下基于MODWT的沪深300指数现货与期货市场间波动溢出效应[J]. 系统工程, 2015, 33(1): 31-38.Sui Xin, He Jianmin, Li Liang. The volatility spillover effects between HS 300 stock index future and spot market based on MODWT from a time-varying perspective[J]. Systems Engineering, 2015, 33(1): 31-38. [46]瞿慧, 程思逸. 考虑成分股联跳与宏观信息发布的沪深300指数已实现波动率模型研究[J]. 中国管理科学, 2017, 24(12): 10-19.Qu Hui, Cheng Siyi. The role of cojumps and macro announcements in forecasting the realized volatility of Chinese CSI 300 index[J]. Chinese Journal of Management Science, 2017, 24(12): 10-19. [47]Barndorff-Nielsen O E, Shephard N. Power and bipower variation with stochastic volatility and jumps[J]. Journal of Financial Econometrics, 2004, 2(1): 1-37. [48]Huang Xin, Tauchen G. The relative contribution of jumps to total price variance[J]. Journal of Financial Econometrics, 2005, 3(4): 456-499. [49]Corsi F, Pirino D, Reno R. Threshold bipower variation and the impact of jumps on volatility forecasting[J]. Journal of Econometrics, 2010, 159(2): 276-288. [50]马锋, 魏宇, 黄登仕. 基于符号收益和跳跃变差的高频波动率模型[J]. 管理科学学报, 2017, 20(10): 31-43.Ma Feng, Wei Yu, Huang Dengshi. Forecasting the realized volatility based on the signed return and signed jump variation[J]. Journal of Management Sciences in China, 2017, 20(10): 31-43. [51]Andrews D W K. Tests for parameter instability and structural change with unknown change point[J]. Econometrica, 1993,61(4): 821-856. [52]Koenker R, Machado J A F. Goodness of fit and related inference processes for quantile regression[J]. Journal of the American Statistical Association, 1999, 94(448): 1296-1310. [53]Chuang Chiachang, Kuan Chungming, Lin Hsinyi. Causality in quantiles and dynamic stock return-volume relations[J]. Journal of Banking & Finance, 2009, 33(7): 1351-1360. [54]Plakandaras V, Gogas P, Papadimitriou T. The effects of geopolitical uncertainty in forecasting financial markets: a machine learning approach[J]. Algorithms, 2019, 12(1): 1. [55]万谍, 杨晓光. 价格跳跃前大中小单的行为特征和信息含量[J]. 管理科学学报, 2019, 22(10): 37-54.Wan Die, Yang Xiaoguang. Behavioral characteristics and informativeness of large, medium and small orders before price jumps[J]. Journal of Management Sciences in China, 2019, 22(10): 37-54. [56]Balcilar M, Bonato M, Demirer R, et al. The effect of investor sentiment on gold market return dynamics: Evidence from a nonparametric causality-in-quantiles approach[J]. Resources Policy, 2017, 51: 77-84. [57]Gkillas K, Gupta R, Lau C K M, et al. Jumps beyond the realms of cricket: India’s performance in One Day Internationals and stock market movements[J]. Journal of Applied Statistics, 2019, 47(6): 1109-1127. |
[1] | 郭冉冉,叶五一,刘小泉,缪柏其. 商品期货投资组合与市场收益的尾部相依研究[J]. 中国管理科学, 2024, 32(10): 11-19. |
[2] | 韩鑫韬,张晓敏,刘星. 宏观审慎管理配合下的最优货币政策选择[J]. 中国管理科学, 2024, 32(10): 1-10. |
[3] | 成思聪,王天一. 引入隔夜信息的期权定价模型研究[J]. 中国管理科学, 2024, 32(9): 1-10. |
[4] | 吴鑫育,谢海滨,马超群. 经济政策不确定性与人民币汇率波动率[J]. 中国管理科学, 2024, 32(8): 1-14. |
[5] | 谢楠,何海涛,周艳菊,王宗润. 乡村振兴背景下基于中央政府项目补贴分析的供应链金融决策研究[J]. 中国管理科学, 2024, 32(8): 214-229. |
[6] | 于孝建,刘国鹏,刘建林,肖炜麟. 基于LSTM网络和文本情感分析的股票指数预测[J]. 中国管理科学, 2024, 32(8): 25-35. |
[7] | 倪宣明,郑田田,赵慧敏,武康平. 基于最优异质收益率因子的资产定价研究[J]. 中国管理科学, 2024, 32(8): 50-60. |
[8] | 于文华,任向阳,杨坤,魏宇. 传染病不确定性对大宗商品期货价格波动的非对称影响研究[J]. 中国管理科学, 2024, 32(5): 254-264. |
[9] | 蔡毅,唐振鹏,吴俊传,杜晓旭,陈凯杰. 基于灰狼优化的混频支持向量机在股指预测与投资决策中的应用研究[J]. 中国管理科学, 2024, 32(5): 73-80. |
[10] | 李仲飞,周骐. 一个基于BL模型和复杂网络的行业配置模型[J]. 中国管理科学, 2024, 32(4): 1-13. |
[11] | 张雪彤,张卫国,王超. 发达市场与新兴市场的尾部风险[J]. 中国管理科学, 2024, 32(4): 14-25. |
[12] | 尹海员,寇文娟. 基于朴素贝叶斯法的投资者情绪度量及其对股票特质风险的影响[J]. 中国管理科学, 2024, 32(4): 38-47. |
[13] | 王晓燕,杨胜刚,张科坤. 终极所有权结构与企业委托贷款行为[J]. 中国管理科学, 2024, 32(4): 48-57. |
[14] | 李爱忠,任若恩,董纪昌. 图网络风险感知与稀疏低秩的组合管理策略[J]. 中国管理科学, 2024, 32(4): 58-65. |
[15] | 吴鑫育,姜晓晴,李心丹,马超群. 基于已实现EGARCH-FHS模型的上证50ETF期权定价研究[J]. 中国管理科学, 2024, 32(3): 105-115. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|