主管:中国科学院
主办:中国优选法统筹法与经济数学研究会
   中国科学院科技战略咨询研究院

中国管理科学 ›› 2025, Vol. 33 ›› Issue (4): 24-35.doi: 10.16381/j.cnki.issn1003-207x.2023.1706

• • 上一篇    下一篇

宏观流动性收紧视角下银行流动性风险传染机制研究

饶玉蕾, 欧阳红兵(), 韩民春, 王子鸿   

  1. 华中科技大学经济学院,湖北 武汉 430074
  • 收稿日期:2023-10-16 修回日期:2024-02-06 出版日期:2025-04-25 发布日期:2025-04-29
  • 通讯作者: 欧阳红兵 E-mail:ouyanghb@hust.edu.cn
  • 基金资助:
    国家自然科学基金重大项目(71991473)

Research on the Contagion Mechanism of Bank Liquidity Risk from the Perspective of Macro Liquidity Tightening

Yulei Rao, Hongbing Ouyang(), Minchun Han, Zihong Wang   

  1. School of Economics,Huazhong University of Science and Technology,Wuhan 430074,China
  • Received:2023-10-16 Revised:2024-02-06 Online:2025-04-25 Published:2025-04-29
  • Contact: Hongbing Ouyang E-mail:ouyanghb@hust.edu.cn

摘要:

在美联储持续加息的压力下,硅谷银行由于流动性管理存在期限错配的问题从而破产,冲击了全球金融体系,宏观流动性的收紧增大了微观流动性风险爆发的压力。本文将银行流动性资金持有量决策的竞争均衡条件映射到空间计量模型中,将银行间网络关联结构与空间权重矩阵描述竞争均衡时群体存在相互作用的内涵相衔接,以2010—2021年上市银行为样本,刻画了微观个体决策行为加总导致流动性风险变化的传导和累积机制,并通过结构估计反向识别银行的网络传染效应。研究结果显示,银行网络传染效应是影响银行对系统性风险贡献大小的主要因素,银行获取流动性资金的途径具有外部依赖性。在我国去杠杆政策的背景下,随着银行关联网络密度的下降,银行间网络对于流动性风险的传染效应呈现下降趋势,而单家银行面临的流动性风险有所上升。为防范和化解系统性风险,要关注宏观流动性调节政策给微观主体带来的流动性风险管理压力,提高银行对流动性风险的应急管理能力,加强对流动性风险的监测、预警和管控。

关键词: 流动性风险, 网络风险传播机制, 流动性决策, 空间计量模型, 最小密度算法

Abstract:

Under pressure from successive interest rate hikes by the US Federal Reserve, Silicon Valley Bank collapsed due to maturity mismatch problems in liquidity management, affecting the global financial system. The tightening of macro liquidity has added to the pressure of micro liquidity risk outbreaks. In this paper, the competitive equilibrium conditions are mapped for bank liquidity holding decisions into a regression model, corresponding to the connotation of the interbank network structure to a spatial econometric model that describes the implications of interactions between entities in a competitive equilibrium. Using the listed banks from 2010 to 2021 as samples, the transmission and accumulation mechanism of liquidity risk changes resulting from the aggregation of micro-level decision-making behaviors combining spatial econometric model and minimum density algorithm is elucidated. Additionally, it employs structural estimation to identify the contagion effect within the bank network.The research results demonstrate three main conclusions. Firstly, The source of liquidity funds obtained by banks is externally dependent due to the existence of bank network. Secondly, the contribution of banks to systemic risk is influenced by the magnitude of exogenous shocks and the mechanism of network propagation, with the risk of contagion from network propagation being the main source. This network propagation risk is the result of the gradually decaying impact of random error shocks in the form of a covariance structure on the bank in question. Thirdly, Against the backdrop of China’s deleveraging policy, as bank network density declines, the contagion effect of liquidity risk among banks exhibits a downward trend and the topology of bank networks shows a trend toward decentralization,while individual bank liquidity risks increase. To effectively prevent and mitigate systemic risks, it is imperative to address the liquidity risk management challenges arising from macro-level liquidity adjustment policies for micro entities. It is crucial to establish an integrated early warning mechanism by building a framework system of macro liquidity volatility affecting financial institutions' decision making. This necessitates enhancing banks' capacity for emergency liquidity risk management and bolstering monitoring, early warning systems, and control mechanisms pertaining to liquidity risk in banking institutions.

Key words: liquidity risk, network risk contagion mechanism, liquidity decisions, spatial econometric model, minimum density

中图分类号: