主管:中国科学院
主办:中国优选法统筹法与经济数学研究会
   中国科学院科技战略咨询研究院

中国管理科学 ›› 2025, Vol. 33 ›› Issue (2): 150-160.doi: 10.16381/j.cnki.issn1003-207x.2023.1278cstr: 32146.14.j.cnki.issn1003-207x.2023.1278

• • 上一篇    下一篇

基于卡车-无人机协同的山区自然灾害应急物资调度优化决策研究

章可怡1, 石咏1,2(), 郭海湘1,2, 孙永征3,4   

  1. 1.中国地质大学(武汉)经济管理学院,湖北 武汉 430074
    2.中国地质大学(武汉)自然灾害风险防控与应急管理实验室,湖北 武汉 430074
    3.中国矿业大学数学学院,江苏 徐州 221116
    4.江苏省应用数学(中国矿业大学)中心,江苏 徐州 221116
  • 收稿日期:2023-07-30 修回日期:2023-10-06 出版日期:2025-02-25 发布日期:2025-03-06
  • 通讯作者: 石咏 E-mail:shiyong@cug.edu.cn
  • 基金资助:
    国家自然科学基金项目(72304256);湖北省高等学校哲学社会科学研究重大项目(22ZD013);中国科协智库青年人才项目(20220615ZZ07110348);中央高校基本科研业务费专项资金项目(CUG2642022006)

Optimal Decision-Making for Dispatching Emergency Supplies for Natural Disasters in Mountainous Areas Based on Truck-Drone Collaboration

Keyi Zhang1, Yong Shi1,2(), Haixiang Guo1,2, Yongzheng Sun3,4   

  1. 1.School of Economics and Management Science,China University of Geosciences,Wuhan 430074,China
    2.Laboratory of Natural Disaster Risk Prevention and Emergency Management,China University of Geosciences,Wuhan 430074,China
    3.School of Mathematics,China University of Mining and Technology,Xuzhou 22116,China
    4.Center for Applied Mathematics of Jiangsu Province (China University of Mining and Technology 221116,Xu Zhou)
  • Received:2023-07-30 Revised:2023-10-06 Online:2025-02-25 Published:2025-03-06
  • Contact: Yong Shi E-mail:shiyong@cug.edu.cn

摘要:

应急物资调度是灾后应急响应的关键环节,其调度效率直接影响救援效果。突发自然灾害经常伴随着道路损毁,严重制约着应急物资的运输。在应急物资调度中,卡车载重量大、行驶距离长;无人机运输不依赖于地面路况但受到电池和载重约束,二者协同能够实现优势互补。为提升应急物资的调度效率,本文研究了卡车-无人机协同的灾后应急物资调度策略。以卡车和无人机完成所有物资运输并回到配送中心的时间最短为目标,考虑卡车和无人机的载重和里程约束、道路损毁和道路拥堵限制,建立了混合整数规划模型。针对所提出的模型属于NP难问题,融合遗传算法和动态规划算法的优点,提出了新的混合算法(hybrid method based on genetic algorithm and dynamic programming, HGADP)。本文针对提出的管理问题场景,设计了小、中、大三种不同规模的算例,通过将本文提出的算法与Gurobi求解器和前人提出的算法对比,验证了本文提出算法的有效性。通过算例结果分析,发现相比于传统车辆运输模型,本文提出的卡车-无人机协同运输模型可大幅地节省物资运输时间。最后,本文对无人机载重和续航里程进行灵敏性分析,分析了参数变化对应急物资调度效率的影响。本研究拓展了应急物资调度策略,为应急管理部门的应急物资调度决策提供了决策依据。

关键词: 物资调度, 遗传算法, 动态规划, 卡车和无人机

Abstract:

Emergency material dispatch is a key link in post-disaster emergency response, and its dispatch efficiency directly affects the rescue effect. Sudden natural disasters are often accompanied by road damage, which seriously restricts the transportation of emergency supplies. In emergency material dispatch, trucks have large carrying capacity and long driving distances. drones do not depend on ground road conditions but are subject to battery and load constraints. The collaboration of the two can achieve complementary advantages. In order to improve the dispatching efficiency of emergency supplies, the post-disaster emergency supplies dispatching strategy of truck-drone collaboration is studied. Taking the shortest time for trucks and drones to complete all material transportation and return to the distribution center as the objective; considering the load and mileage constraints of trucks and drones, road damage and road congestion restrictions, a mixed integer programming model is established. Since the proposed model is an NP-hard problem and combines the advantages of genetic algorithm and dynamic programming algorithm, a new hybrid algorithm (hybrid method based on genetic algorithm and dynamic programming, HGADP) is proposed. Three different scale calculation examples of small, medium and large are designed for the proposed management problem scenario. By comparing the algorithm proposed in this paper with the Gurobi solver and the algorithm proposed in the previous study, the effectiveness of the algorithm proposed in this paper is verified. Through analysis of the calculation example results, it is found that compared with the traditional vehicle transportation model, the truck-drone collaborative transportation model proposed in this article can significantly save material transportation time. Finally, a sensitivity analysis on the drone load capacity and cruising range is conducted, and the impact of parameter changes on the efficiency of emergency material dispatching is analyzed. The emergency material dispatching strategy and is expanded a decision-making basis for emergency material dispatching decisions of emergency management departments is provided in this study.

Key words: material scheduling, genetic algorithms, dynamic programming, trucks and drones

中图分类号: