Chinese Journal of Management Science ›› 2023, Vol. 31 ›› Issue (12): 301-310.doi: 10.16381/j.cnki.issn1003-207x.2021.0383
Previous Articles Next Articles
Shi-feng LIU1,3,Lai-song KANG1,2,3,Da-qing GONG1,3(
)
Received:2021-02-26
Revised:2021-05-11
Online:2023-12-15
Published:2023-12-20
Contact:
Da-qing GONG
E-mail:dqgong@bjtu.edu.cn
CLC Number:
Shi-feng LIU,Lai-song KANG,Da-qing GONG. An Event POI Recommendation System for Groups in EBSN[J]. Chinese Journal of Management Science, 2023, 31(12): 301-310.
"
| 类别 | 模型 | Recall @10 | NDCG@10 |
|---|---|---|---|
| 活动 | MARec | 0.9127 | 0.7774 |
| SERGE | 0.8473 | 0.7329 | |
| DeepCoNN | 0.7653 | 0.7159 | |
| 爱好 | MARec | 0.8312 | 0.6030 |
| SERGE | 0.6784 | 0.5810 | |
| DeepCoNN | 0.5721 | 0.3724 | |
| 社交 | MARec | 0.8567 | 0.6885 |
| SERGE | 0.8203 | 0.6863 | |
| DeepCoNN | 0.4549 | 0.2862 | |
| 娱乐 | MARec | 0.9231 | 0.8210 |
| SERGE | 0.9104 | 0.8382 | |
| DeepCoNN | 0.9114 | 0.7411 | |
| 技术 | MARec | 0.7864 | 0.6369 |
| SERGE | 0.7434 | 0.6487 | |
| DeepCoNN | 0.1356 | 0.1341 |
| 1 | 郭旦怀, 张鸣珂, 贾楠,等. 融合深度学习技术的用户兴趣点推荐研究综述[J]. 武汉大学学报(信息科学版), 2020, 45(12):1890-1902. |
| Guo Danhuai, Zhang Mingke, Jia Nan, et al. Survey of point-of-interest recommendation research fused with deep learning[J]. Geomatics and Information Science of Wuhan University,2020,45(12):1890-1902. | |
| 2 | Feng Jie, Li Yong, Yang Zeyu, et al. Predicting human mobility with semantic motivation via multi-task attentional recurrent networks[J]. IEEE Transactions on Knowledge and Data Engineering, 2020,34(5):2360-2374. |
| 3 | Lops P, De Gemmis M, Semeraro G. Content-based recommender systems: state of the art and trends[M]//Recommender Systems Handbook. Springer, Boston, MA, 2011: 73-105. |
| 4 | 仲秋雁, 王涵雪. LBSN下基于用户朋友关系的商业POI推荐[J]. 系统工程理论与实践,2021,41(10):2501-2511. |
| Zhong Qiuyan, Wang Hanxue. Commercial POI recommendation based on user's friend relationship in LBSN[J]. Systems Engineering-Theory & Practice, 2021,41(10):2501-2511. | |
| 5 | 陈劲松, 孟祥武, 纪威宇,等. 基于多维上下文感知图嵌入模型的兴趣点推荐[J]. 软件学报,2020,31(12):3700-3715. |
| Chen Jinsong, Meng Xiangwu, Ji Weiyu, et al. POI recommendation based on multidimensional context-aware graph embedding model[J]. Ruan Jian Xue Bao/Journal of Software, 2020,31(12):3700-3715. | |
| 6 | Sun Yizhou, Han Jiawei, Zhao Peixiang, et al. Rankclus: integrating clustering with ranking for heterogeneous information network analysis [C]//Proceedings of the 12th International Conference on Extending Database Technology: Advances in Database Technology, Saint-Petersburg, Russia, March 24-26 , Association for Computing Machinery, 2009: 565-576. |
| 7 | Shi Chuan, Li Yitong, Zhang Jiawei, et al. A survey of heterogeneous information network analysis[J]. IEEE Transactions on Knowledge and Data Engineering, 2016, 29(1): 17-37. |
| 8 | Zhao Huan, Yao Quanming, Li Jiandan, et al. Meta-graph based recommendation fusion over heterogeneous information networks[C]// Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Halifax NS, Canada, August 13-17 , Association for Computing Machinery,2017: 635-644. |
| 9 | 康来松, 刘世峰, 宫大庆. LBSN中基于加权异构信息网络的兴趣点推荐[J]. 系统工程,2020,38(6):14-24. |
| Kang Laisong, Liu Shifeng, Gong Daqing. Weighted heterogeneous information networks based personalized point-of-interest recommendation system in LBSN[J]. Systems Engineering,2020,38(06):14-24. | |
| 10 | 陈江美, 张岐山, 张文德,等. 融合潜在兴趣和多类型情景信息的兴趣点推荐模型[J]. 情报科学,2021,39(3):143-149+160. |
| Chen Jiangmei, Zhang Qishan, Zhang Wende, et al. Point of interest recommendation model combining potential check-ins and multi-type contextual information. Information Science,2021,39(3):143-149+160. | |
| 11 | 朱志国, 周雨禾, 王谢宁. 移动商务中融合签到位置与用户间相似性的兴趣点精准推荐[J]. 系统工程理论与实践,2020,40(2):462-469. |
| Zhu Zhiguo, Zhou Yuhe, Wang Xiening. Recommendation of POI by integrating user similarity and location information in mobile commerce[J]. Systems Engineering- Theory& Practice,2020,40(2):462-469. | |
| 12 | Xu Linchuan, Wei Xiaokai, Cao Jiannong, et al. Embedding of Embedding (EOE) joint embedding for coupled heterogeneous networks[C]//Proceedings of the Tenth ACM International Conference on Web Search and Data Mining, Cambridge, United Kingdom, February 6-10 ,Association for Computing Machinery, 2017: 741-749. |
| 13 | Dong Yuxiao, Chawla N V, Swami A. Metapath2vec: scalable representation learning for heterogeneous networks[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,Halifax NS, Canada, August 13-17 , Association for Computing Machinery,2017: 135-144. |
| 14 | Fu Taoyang, Lee Wangchien, Lei Zhen. Hin2vec: explore meta-paths in heterogeneous information networks for representation learning[C]// Proceedings of the 2017 ACM on Conference on Information and Knowledge Management,Singapore, November 6-10 ,Association for Computing Machinery,2017: 1797-1806. |
| 15 | Xiong Caiming, Zhong Victor, Socher R. Dynamic coattention networks for question answering[J]. arXiv preprint arXiv:, 2016. |
| 16 | Gao Jianfeng, Pantel P, Gamon M, et al. Modeling interestingness with deep neural networks[C]// Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP),Doha, Qatar, October, Association for Computational Linguistics,2014: 2-13. |
| 17 | Raich M, Mueller J, Abfalter D. Hybrid analysis of textual data: grounding managerial decisions on intertwined qualitative and quantitative analysis[J]. Management Decision, 2014, 52(4):737 - 754. |
| 18 | Yin Hongzhi, Zhou Xiaofang, Cui Bin, et al. Adapting to user interest drift for poi recommendation[J]. IEEE Transactions on Knowledge and Data Engineering, 2016, 28(10): 2566-2581. |
| 19 | Pramanik S, Haldar R, Kumar A, et al. Deep learning driven venue recommender for event-based social networks[J]. IEEE Transactions on Knowledge and Data Engineering, 2019,32(11):2129-2143. |
| 20 | Hinton G E, Salakhutdinov R R. A better way to pretrain deep boltzmann machines[C]//Advances in Neural Information Processing Systems,Lake Tahoe, Nevada, United States,November 21, The MIT Press,2012: 2447-2455. |
| 21 | Chen Tianqi, Zhang Weinan, Lu Qiuxia, et al. SVDFeature: a toolkit for feature-based collaborative filtering[J]. The Journal of Machine Learning Research, 2012, 13(1): 3619-3622. |
| 22 | Phan M C, Sun Aixin, Tay Y, et al. NeuPL: Attention-based semantic matching and pair-linking for entity disambiguation[C]//Proceedings of the 2017 ACM on Conference on Information and Knowledge Management,Singapore, November 6-10 ,Association for Computing Machinery,2017: 1667-1676. |
| 23 | Tang Jian, Qu Meng, Wang Mingzhe, et al. Line: large-scale information network embedding[C] //Proceedings of the 24th international conference on world wide web,Florence, Italy, May 18-22 ,Association for Computing Machinery,2015: 1067-1077. |
| 24 | Pham T A N, Li Xutao, Gao Cong, et al. A general recommendation model for heterogeneous networks[J]. IEEE Transactions on Knowledge and Data Engineering, 2016, 28(12): 3140-3153. |
| 25 | Liu Shenghao, Wang Bang, Xu Minghua. Serge: successive event recommendation based on graph entropy for event-based social networks[J]. IEEE Access, 2017(6): 3020-3030. |
| 26 | Lei Zheng, Noroozi V, Yu P S. Joint deep modeling of users and items using reviews for recommendation[C]//Proceedings of the Tenth ACM International Conference on Web Search and Data Mining,Cambridge, United Kingdom, February 6-10 ,Association for Computing Machinery, 2017: 425-434. |
| 27 | He Xiangnan, Liao Lizi, Zhang Hanwang, et al. Neural collaborative filtering[C]//Proceedings of the 26th International Conference on World Wide Web,Companion, Perth, Australia, April 3-7, International World Wide Web Conferences Steering Committee,2017: 173-182. |
| 28 | Resnick P, Iacovou N, Suchak M, et al. GroupLens: an open architecture for collaborative filtering of netnews[C]//Proceedings of the 1994 ACM Conference on Computer Supported Cooperative Work,Chapel Hill, North Carolina, USA, October 22-26, Association for Computing Machinery, 1994: 175-186. |
| 29 | Pramanik S, Gundapuneni M, Pathak S, et al. Can I foresee the success of my meetup group?[C]// Proceedings of the 2016 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, Davis, California, August 18-21 , IEEE Press, 2016: 366-373. |
| [1] | Duanyang Cao, Xumei Zhang, Bin Dan. Research on Capacity Matching Strategy of Third-party Shared Manufacturing Platform Considering Order Splitting [J]. Chinese Journal of Management Science, 2025, 33(10): 225-235. |
| [2] | Yu Feng, Yaoguo Dang, Junjie Wang, Zhangcheng Yang. Grey Incidence Decision-making Method with Mixed Information Based on 2-additive Choquet Integral and Its Application [J]. Chinese Journal of Management Science, 2025, 33(9): 189-200. |
| [3] | Shoufeng Ji, Hongyu Liu, Lijie Wang, Yuanyuan Ji. Joint Optimization Model and Algorithm of Cold Chain Product Production-inventory-transportation Considering Freshness-keeping Effort in the Physical Internet [J]. Chinese Journal of Management Science, 2025, 33(8): 166-176. |
| [4] | Zhaofang Mao, Ruiying Yuan, Qingran Zhang. The Optimal Free Trial Strategy of the Online Course Platform Considering Bundling [J]. Chinese Journal of Management Science, 2025, 33(8): 238-249. |
| [5] | Xiaohong Chen, Zhihui Yang, Dongbin Hu. Digital Omnichannel Customer Behavior: Research Hotspots and Knowledge Framework [J]. Chinese Journal of Management Science, 2025, 33(7): 1-10. |
| [6] | Lili Ding, Zhongchao Zhao, Kaixuan Zhang. Research on the Mechanism of Perceived Value on the Development of Personal Carbon Account Green Credit [J]. Chinese Journal of Management Science, 2025, 33(5): 344-355. |
| [7] | Wei Gu, Yajin Liu, Feng Susan Lu, Xiangbin Yan. AI-Driven Decision Sciences: Application, Perception and Bias [J]. Chinese Journal of Management Science, 2025, 33(5): 99-112. |
| [8] | Jia Liu, Xin Yuan, Weiqiao Ruan, Jinyu Bai. Infection Risk Control of Pedestrians in Subway Stations under Epidemic of Respiratory Infectious Diseases [J]. Chinese Journal of Management Science, 2025, 33(5): 236-246. |
| [9] | Yiwen Bian, Wenchao Cheng. Offline Channel Strategy and Operations Model Adoption in a Platform Supply Chain [J]. Chinese Journal of Management Science, 2025, 33(4): 165-174. |
| [10] | Bing Su, Xueyun Geng, Hao Ji, Yang Xu, Qinge Guo, Guanghui Chen, Juan Zhang. Research on Route Selection for Emergency Materials Distribution with Unpredictable Service Requests of Demand Points [J]. Chinese Journal of Management Science, 2025, 33(4): 197-203. |
| [11] | Zaiwu Gong, Jiaqi Yang. Study on Uncertain Programming Modeling of Multi-period Emergency Material Allocation Considering the Psychology of Victims [J]. Chinese Journal of Management Science, 2025, 33(3): 209-222. |
| [12] | Yidong Chai, Haoxin Liu, Yuanchun Jiang, Yezheng Liu. Graph Neural Network Recommendation System Adversarial Attack Method Based on Importance Maximization and Community Partition [J]. Chinese Journal of Management Science, 2025, 33(2): 95-104. |
| [13] | Shanlin Yang, Xiaojian Li, Hangjie Mo, Qiang Zhang, Xiaoan Tang. The Basic Characteristics and Key Scientific Problems of Technology Strategic Supply Chain [J]. Chinese Journal of Management Science, 2025, 33(1): 1-13. |
| [14] | Xiaohong Chen, Guanying Xu, Xuesong Xu, Guodong Yi, Jiale Tang, Tianshuo Liu. Transformations in Management Science under the Perspective of New Qualitative Productive Forces: Intrinsic Features, Real Challenges, and Development Pathways [J]. Chinese Journal of Management Science, 2025, 33(1): 14-21. |
| [15] | Xunfeng Hu, Erfang Shan, Dengfeng Li. The Shapley Values for Cooperative Games with a Communication Ggraph or a Coalition Structure: A Survey [J]. Chinese Journal of Management Science, 2025, 33(1): 140-152. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
||