Chinese Journal of Management Science ›› 2023, Vol. 31 ›› Issue (12): 96-106.doi: 10.16381/j.cnki.issn1003-207x.2021.2308
Previous Articles Next Articles
Peng ZHANG1(
),Shi-li DANG1,Mei-yu HUANG2,Jing-xin LI1
Received:2021-11-08
Revised:2022-03-04
Online:2023-12-15
Published:2023-12-20
Contact:
Peng ZHANG
E-mail:zhangpeng300478@aliyun.com
CLC Number:
Peng ZHANG,Shi-li DANG,Mei-yu HUANG, et al. Two-stage Mean Semi-variance Portfolio Optimization with Stock Return Prediction Using Machine Learning[J]. Chinese Journal of Management Science, 2023, 31(12): 96-106.
| 1 | Markowitz H. Portfolio selection[J]. Journal of Finance,1952,7(1):77-91. |
| 2 | Markowitz H M. Portfolio Selection: Efficient Diversification of Investments [M]. New York,Wiley: 1959. |
| 3 | Zhang Peng, Dang Shili. The weighted lower and upper admissible mean downside semi-variance portfolio selection[J]. International Journal of Fuzzy Systems, 2021,23(6):1775-1788. |
| 4 | 姚海祥,姜灵敏,马庆华.不允许买空时的均值-下方风险投资组合选择——基于非参数估计方法[J].数理统计与管理,2015,34(6):1077-1086. |
| Yao Haixiang, Jiang Lingmin, Ma Qinghua. Mean-downside risk portfolio selection without short selling: based on nonparametric estimation[J]. Journal of Applied Statistics and Management, 2015, 34(6):1077-1086. | |
| 5 | Yan Wei, Miao Rong, Li Shurong. Multi-period semi-variance portfolio selection model and numerical solution[J]. Applied Mathematics and Computation, 2007, 194(1):128-134. |
| 6 |
张鹏,李影,曾永泉.现实约束下多阶段模糊投资组合的时间一致性策略研究[J].中国管理科学, 2022. DOI:10.16381/j.cnki.issn1003-207x.2020.1759 .
doi: 10.16381/j.cnki.issn1003-207x.2020.1759 |
|
Zhang Peng, Li Ying, Zeng Yongquan. Time-consistent strategy for the multiperiod possibilistic portfolio selection with real constraints[J]. Chinese Journal of Management Science, 2022. DOI:10.16381/j.cnki.issn1003-207x.2020.1759 .
doi: 10.16381/j.cnki.issn1003-207x.2020.1759 |
|
| 7 | Guerard J B, Markowitz H, Xu Ganlin. Earnings forecasting in a global stock selection model and efficient portfolio construction and management[J]. International Journal of Forecasting. 2015,31(2):550-560. |
| 8 | Wang Wuyu, Li Weizi, Zhang Ning, et al. Portfolio formation with preselection using deep learning from long-term financial data[J]. Expert Systems with Applications. 2020, 143: 113042. |
| 9 | Lin Chiming, Huang J J, Gen M, et al. Recurrent neural network for dynamic portfolio selection[J].Applied Mathematics and Computation, 2006, 175(2):1139-1146. |
| 10 | Thenmozhi M, Sarath Chand G. Forecasting stock returns based on information transmission across global markets using support vector machines[J]. Neural Computing and Applications, 2016, 27(4):805-824. |
| 11 | Krauss C. Deep neural networks, gradient-boosted trees, random forests: statistical arbitrage on the S&P 500[J]. European Journal of Operational Research, 2017(2): 689-702. |
| 12 | Freitas F D, Souza A, Almeida A. Prediction-based portfolio optimization model using neural networks[J]. Neurocomputing, 2009, 72(10-12):2155-2170. |
| 13 | Day M Y, Lin Jianting. Artificial intelligence for ETF market prediction and portfolio optimization[C]//Proceedings of the 2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, Vancouver, Canada, August 27-30, 2019, IEEE, 2019: 1026-1033. |
| 14 | Fischer T, Krauss C. Deep learning with long short-term memory networks for financial market predictions[J]. European Journal of Operational Research, 2018, 270(2): 654-669. |
| 15 | Lee S I, Yoo S J. Threshold-based portfolio: the role of the threshold and its applications[J]. Journal of Supercomputing, 2018, 76(10): 8040-8057. |
| 16 | Wong S. Stock price prediction model based on the short-term trending of KNN method[C]//Proceedings of the 2020 7th International Conference on Information Science and Control Engineering, Changsha, China, June 7, 2020, IEEE: 1355-1360. |
| 17 | Paiva F D, Cardoso R T N, Hanaoka G P, et al. Decision-making for financial trading: a fusion approach of machine learning and portfolio selection[J]. Expert Systems with Applications, 2019, 115: 635-655. |
| 18 | Ayala J, García-Torres M, Noguera J, et al. Technical analysis strategy optimization using a machine learning approach in stock market indices[J]. Knowledge-Based Systems, 2021, 225(6):107119. |
| 19 | Ma Yilin, Han Ruizhu, Wang Weizhong. Portfolio optimization with return prediction using deep learning and machine learning[J]. Expert Systems with Applications. 2021, 165: 113973. |
| 20 | Chen T, Guestrin C. XGBoost: a scalable tree boosting system[C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, August,13-17, 2016: 785-794. |
| 21 | Hongjoong K. Mean-variance portfolio optimization with stock return prediction using XGBoost[J]. Economic Computation and Economic Cybernetics Studies and Research, 2021, 55(4): 5-20. |
| 22 | Chen Wei, Zhang Haoyu, Mehlawat M K, et al. Mean-variance portfolio optimization using machine learning:based stock price prediction[J]. Applied Soft Computing, 2021, 100: 106-943. |
| 23 | Cortes C, Vapnik V. Support-vector networks. Mach Learn[J], 1995, 20(3):273-297. |
| 24 | Pan Jia, Manocha D. Bi-level locality sensitive hashing for k-nearest neighbor computation[C]//Proceedings of the 2012 IEEE 28th International Conference on Data Engineering, Washington D C, America, April 01-05, 2012, IEEE, 2012: 378-389. |
| 25 | 张鹏. 可计算的投资组合模型与优化方法研究[D]. 武汉: 华中科技大学, 2006. |
| Zhang Peng. The studying on the models and optimal methods of the computable selection [D].Wuhan: Huazhong University of Science and Technology, 2006. | |
| 26 | Yang Li, Shami A. On hyperparameter optimization of machine learning algorithms: theory and practice[J]. Neurocomputing, 2020, 415: 295-316. |
| 27 | 张鹏. 不允许卖空情况下均值-方差和均值-VaR投资组合比较研究[J]. 中国管理科学, 2008(4): 30-35. |
| Zhang Peng. The comparison between mean-variance and mean-VaR portfolio models without short sales[J]. Chinese Journal of Management Science, 2008,16(4):30-35. | |
| 28 | Ballings M, Van den Poel D, Hespeels N, et al. Evaluating multiple classifiers for stock price direction prediction[J]. Expert Systems with Applications, 2015;42(20):7046-7056. |
| [1] | Wei Gu, Yajin Liu, Feng Susan Lu, Xiangbin Yan. AI-Driven Decision Sciences: Application, Perception and Bias [J]. Chinese Journal of Management Science, 2025, 33(5): 99-112. |
| [2] | Manru Dong, Xiaobin Tang. Study on CPI Prediction by LSTM Model Based on Double-Layer Attention Mechanism [J]. Chinese Journal of Management Science, 2025, 33(5): 113-123. |
| [3] | Xingyi Li, Zhongfei Li, Qiqian Li, Yujun Liu, Wenjin Tang. A Review of Research on Asset Return Prediction Based on Machine Learning [J]. Chinese Journal of Management Science, 2025, 33(1): 311-322. |
| [4] | Xinnan Lei,Lefan Lin,Binqing Xiao,Honghai Yu. Re-exploration of Small and Micro Enterprises' Default Characteristics Based on Machine Learning Models with SHAP [J]. Chinese Journal of Management Science, 2024, 32(5): 1-12. |
| [5] | Yuting Yan,Wenjie Bi. A Data-driven Single-Period Newsvendor Problem Based on XGBoost Algorithm [J]. Chinese Journal of Management Science, 2024, 32(1): 260-267. |
| [6] | LIANG Mo, LI Hong-xiang, ZHANG Shun-ming. A Measure for Financial Distress based on ST Predictive Model and the Cross-section of Stock Returns [J]. Chinese Journal of Management Science, 2023, 31(2): 138-149. |
| [7] | Jian ZHANG,Ting-yu XIE,Peng PENG,Hong-wei WANG. Research on the Correlation between Product Knowledge Attributes and Sales Forecast in Multi-Value Chain Collaborative Data Space of Manufacturing Industry [J]. Chinese Journal of Management Science, 2023, 31(11): 341-348. |
| [8] | LIU De-wen, GAO Wei-he, MIN Liang-yu. The Impact of Readability and Attractiveness on Product Sales——Text Analysis Based on Movie Introduction [J]. Chinese Journal of Management Science, 2022, 30(6): 167-177. |
| [9] | LIANG Chao, WEI Yu, MA Feng, LI Xia-fei. Forecasting Volatility of China Gold Futures Price: New Evidence from Model Shrinkage Methods [J]. Chinese Journal of Management Science, 2022, 30(4): 30-41. |
| [10] | CHEN Kai-jie, TANG Zhen-peng, WU Jun-chuang, ZHANG Ting-ting, DU Xiao-xu. Prediction Method and Empirical Study of Precious Metal Futures Price [J]. Chinese Journal of Management Science, 2022, 30(12): 245-253. |
| [11] | YUAN George Xianzhi, , , , , , ZHAO Min, LIU Hai-yang, ZHOU Yun-peng, YAN Cheng-xing, SHI Bao-feng, CHAI Na-na, LIN Jian-wu, HE Cheng-ying, MA Sheng, ZHANG Qian-you, DING Xiao-wei. The Framework for Characteristic Factors of Poverty Statusby Using AI Algorithms:Related to the Path Choice of Rural Revitalization in China [J]. Chinese Journal of Management Science, 2022, 30(12): 234-244. |
| [12] | LI Jian-bin, LEI Ming-hao, DAI Bin, CAI Xue-yuan. Epharmacy Demand Forecasting in the Presence of Promotional Activities [J]. Chinese Journal of Management Science, 2022, 30(12): 120-130. |
| [13] | DONG Lu-an, YE Xin. Interpretable Credit Risk Assessment Modeling Based on Improved Pedagogical Method [J]. Chinese Journal of Management Science, 2020, 28(9): 45-53. |
| [14] | ZHANG Peng. The Comparison between Mean-Variance and Mean-VaR Portfolio Models without Short Sales [J]. Chinese Journal of Management Science, 2008, 16(4): 30-35. |
| [15] | ZHANG Peng, ZHANG Zhong-zhen, YUE Chao-yuan. Optimization of the Mean Semi-absolute Deviation Portfolio Selection Model with the Restricted Short Selling Based on the Pivoting Algorithm [J]. Chinese Journal of Management Science, 2006, (2): 7-11. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
||