针对传统层次分析法(AHP)在构造判断矩阵过程中需要满足一致性条件问题,本文研究AHP方法需要进行一致性调整的原因,提出了一种基于流形学习的非一致性判断矩阵排序方法。在非一致性判断矩阵排序过程中,首先基于近邻距离的概念,构建出判断矩阵所对应数据集的近邻距离矩阵;然后以近邻点的线性表示为基础,将每个数据点映射到一个全局低维坐标系,并据此获得判断矩阵所对应的低维嵌入;根据各层求解出的低维嵌入对各层要素进行优劣排序,进而得到最终排序结论。最后,通过数值案例验证了所提方法的有效性和实用性。
To solve the problems of the traditional AHP method which needs to satisfy the consistency condition in constructing judgment matrixes, the reasons of consistency regulation from AHP are studied and an inconsistency judgment matrix ranking method based on manifold learning is proposed in this paper. In the ranking process of inconsistency judgment matrixes, on the basis of the neighbor distance, the neighbor distance matrixes of the data sets corresponding to judgment matrixes are constructed firstly. Next each data point is mapped to a low-dimensionally global coordinate system based on the linear representations of the neighbor points, and the low-dimensional embeddings that correspond to judgment matrixes are obtained. Then the ranking conclusion is gotten by analyzing the superiority and inferiority ranking of the elements according to the correspondingly calculated low-dimensional embeddings from each hierarchy. Finally, a numerical example illustrates that the proposed method has a higher level of effectiveness and practicability.
[1] Saaty T L. A scaling method for priorities in hierarchical structures[J]. Journal of Mathematical Psychology, 1978, 1(1):57-68.
[2] Saaty T L. Axiomatic foundation of the analytic hierarchy process[J]. Management Science, 1986, 23(7):851-855.
[3] Saaty T L,Vargas L G. Uncertainty and rank order in the analytic hierarchy process[J]. European Journal of Operational Research, 1987, 32(1):107-117.
[4] 骆正清. AHP中不一致性判断矩阵调整的新方法[J]. 系统工程理论与实践, 2004, 24(6):84-92.
[5] Saaty T L. Decision making with the AHP:Why is the principal eigenvector necessary[J]. European Journal of Operational Research, 2003, 145(1):85-91.
[6] 王建, 黄凤岗, 景韶. AHP中判断矩阵一致性调整方法研究[J]. 系统工程理论与实践, 2005, 25(8):85-91.
[7] Benitez J, Delgado-Galvan X, Izquierdo J, et al. Achieving matrix consistency in AHP through linearization[J]. Applied Mathematical Modelling, 2011, 35(9):4449-4457.
[8] 刘胜, 张玉廷, 于大泳. 小生境遗传算法修正三角模糊数互补判断矩阵一致性及排序[J]. 系统工程理论与实践, 2011, 31(3):522-529.
[9] 李春好, 杜元伟, 孙永河, 等. 多属性隐式变权决策层习方法[J]. 中国管理科学, 2012, 20(5):163-172.
[10] 吕跃进, 程宏涛, 覃菊莹. 基于判断可信度的层次分析排序方法[J]. 控制与决策, 2012, 27(5):287-291.
[11] 魏翠萍. 层次分析法中和积法的最优化理论基础及性质[J]. 系统工程理论与实践, 1999,19(9):113-115.
[12] 徐泽水, 达庆利. 两种修正判断矩阵一致性方法的比较分析[J]. 东南大学学报(自然科学版), 2002, 32(6):913-916.
[13] 王秋萍. AHP中严格保序性定理条件的修正[J]. 系统工程理论与实践, 1996, 16(10):83-87.
[14] Benítez J, Delgado-Galván X, Izquierdo J, et al. Improving consistency in AHP decision-making processes[J]. Applied Mathematics and Computation, 2012, 219(5):2432-2441.
[15] 徐泽水, 达庆利. 3种基于互反判断矩阵的互补判断矩阵排序方法[J]. 东南大学学报(自然科学版), 2001, 31(5):106-109.
[16] 樊治平, 姜艳萍. 互补判断矩阵中导入新元素的强保序条件[J]. 系统工程理论与实践, 2003, 23(3):37-40.
[17] 刘万里, 雷治军. 关于AHP中判断矩阵校正方法的研究[J]. 系统工程理论与实践, 1997, 17(6):30-39.
[18] Roweis S T, Saul L K. Nonlinear dimensionality reduction by locally linear embedding[J]. Science, 2000, 290(5500):2323-2326.
[19] Kouropteva O, Okun O, Pietikainen M. Incremental locally linear embedding[J].Pattern Recognition, 2005, 38(10):1764-1767.
[20] Wong W K. Discover latent discriminant information for dimensionality reduction:Non-negative Sparseness Preserving Embedding[J]. Pattern Recognition, 2011, 45(4):1511-1523.
[21] Silva V D, Tenenbaumi J B. Global versus local methods in nonlinear dimensionality reduction[A]. Cambridge, MA:MIT, 2002. 705-712.
[22] Wu Fuchao, Hu Zhanyi. The LLE and a linear mapping[J]. Pattern Recognition, 2006, 39(9):1799-1804.
[23] 熊金城. 点集拓扑讲义[M]. 北京:高等教育出版社, 2007.
[24] Munkres J R. Topology[M]. Upper Saddle River:Prentice Hall, 2000.
[25] 魏翠萍. 层次分析法中和积法的最优化理论基础及性质[J]. 系统工程理论与实践, 1999, 19(9):113-115.
[26] 张丽霞, 侍克斌. 施工网络进度计划的多目标优化[J]. 系统工程理论与实践, 2003, 23(1):56-61.
[27] 刘万里. 一种校正判断矩阵的新方法[J]. 系统工程理论与实践, 1999, 19(9):100-104.
[28] 王学军, 郭亚军. 基于G1法的判断矩阵的一致性分析[J]. 中国管理科学, 2006, 14(3):65-70.