日内效应在金融高频数据研究中已被广泛证实,是一种日内周期性运动的动态效应,它影响了以微观金融指标为参数的计量模型的准确估计。基于金融超高频持续期数据,本文首先论述了日内效应调整的重要性,然后引入自适应映射(SOM)的方法对日内效应进行调整。SOM是一种基于神经网络学习的特征提取方法,能够动态识别高维数据中的结构特征,克服了静态调整方法的不足。最后通过建立基于自回归条件持续期模型(ACD)的蒙特卡罗模拟实验,比较了三种日内效应调整方法的效果。模拟结果表明SOM方法在日内效应调整中更为有效和稳定,特别适合大数据条件下的周期性结构分析。
Intra-day periodicity has been widely found in financial high frequency data study,It is a dynamic effect characterized by intra-day periodic motion and it affects the accuracy of econometric model estimation which contains intra-day financial variables. The importance of intra-day periodic adjustment is discussed firstly in this study and then introduces self-organizing maps as a intra-day periodic adjustment solution are introduced based on financial ultra high frequency duration data. The SOM method is a feature extraction on the basis of neural network learning which can recognize the dynamic feature in high-dimensional data in order to overcome the disadvantage of static periodic adjustment. Finally a monte carlo simulation through autoregressive conditional duration model is built to compare the effects of three intra-day periodic adjustment methods. The result shows that the SOM method performs more effective and stable.Therefore SOM method can be particularly suited for analysis of periodic structure in big data.
[1] Engle R F, Russell J R. Autoregressive conditional duration: A new model for irregularly spaced transaction data[J]. Econometrica,1998,66(5): 1127-1162.
[2] Pacurar M. Autoregressive conditional duration models in finance: A survey of the theoretical and empirical literature[J]. Journal of Economic Surveys,2008,22(4): 711-751.
[3] Wood R A, Mcinish T H, Ord J K. An investigation of transactions data for NYSE stocks[J]. Journal of Finance,1985,40(3): 723-739.
[4] Daigler R T. Intraday futures volatility and theories of market behavior[J]. Journal of Futures Markets,1997,17(1): 45-74.
[5] Degennaro R P, Shrieves R E. Public information releases, private information arrival and volatility in the foreign exchange market[J]. Journal of Empirical Finance,1997,4(4): 295-315.
[6] Andersen T G, Bollerslev T. Intraday periodicity and volatility persistence in financial markets[J]. Journal of Empirical Finance,1997,4(2): 115-158.
[7] Cai Jun, Cheung Y-L.‘Once-in-a-generation' yen volatility in 1998: Fundamentals, intervention, and order flow[J]. Journal of International Money and Finance,2001,20(3): 327-347.
[8] Bollerslev T, Ghysels E.Periodic autoregressive conditional heterosced -asticity[J]. Journal of Business & Economic Statistics,1996,14(2): 139-151.
[9] Cho J H, Daigler R T. A filtering process to remove the stochastic component from intraday seasonal volatility[J]. Journal of Futures Markets, 2014,34(5): 479-495.
[10] Engle R F, Sokalska M E. Forecasting intraday volatility in the us equity market:Multiplicative component garch[J]. Journal of Financial Econometrics,2012,10(1): 54-83.
[11] Melvin M, Yin Xixi. Public information arrival, exchange rate volatility, and quote frequency[J]. The Economic Journal,2000,110(465): 644-661.
[12] Bauwens L, Giot P. The logarithmic ACD model: An application to the bid-ask quote process of three NYSE stocks[J]. Annales d'Economie et de Statistique,2000,(60): 117-149.
[13] Veredas D, Rodríguez Poo J M, Espasa A. On the (intradaily) seasonality and dynamics of a financial point process: A semiparametric approach[J].Working Paper,Universidad Carlos III de Madrid,2001.
[14] Boudt K, Croux C, Laurent S. Robust estimation of intraweek periodicity in volatility and jump detection[J].Journal of Empirical Finance,2011,18(2): 353-367.
[15] Wu Zhengxiao. On the intraday periodicity duration adjustment of high-frequency data[J]. Journal of Empirical Finance,2012,19(2): 282-291.
[16] 张晓峒, 徐鹏. 季节调整方法在中国的发展与应用[J].统计研究,2013,30(09): 10-16.
[17] 陈飞, 高铁梅. 结构时间序列模型在季节调整方面的应用——与X-12季节调整方法的比较分析[J]. 系统工程理论与实践,2007,(11): 7-14.
[18] 徐正国, 张世英. 上海股市微观结构的超高频数据分析[J]. 天津大学学报(社会科学版),2005,7(03): 86-89.
[19] 徐正国, 张世英. 高频金融数据"日历效应"的小波神经网络模型分析[J]. 数学的实践与认识,2007,37(15): 1-6.
[20] Kohonen T. Self-organizing maps[M]. Mew York:Springer,2001.