主管:中国科学院
主办:中国优选法统筹法与经济数学研究会
   中国科学院科技战略咨询研究院

中国管理科学 ›› 2025, Vol. 33 ›› Issue (9): 89-96.doi: 10.16381/j.cnki.issn1003-207x.2022.1912

• • 上一篇    下一篇

方向距离函数中最优内生方向与改进路径的确定方法

陈磊, 郭旭, 王应明()   

  1. 福州大学经济与管理学院,福建 福州 350108
  • 收稿日期:2022-09-02 修回日期:2022-10-12 出版日期:2025-09-25 发布日期:2025-09-29
  • 通讯作者: 王应明 E-mail:msymwang@hotmail.com
  • 基金资助:
    国家自然科学基金面上项目(72171052);福建省自然科学基金杰青项目(2024J010015)

Determination of Optimal Endogenous Direction and Improvement Path in Directional Distance Function

Lei Chen, Xu Guo, Yingming Wang()   

  1. School of Economics & Management,Fuzhou University,Fuzhou 350108,China
  • Received:2022-09-02 Revised:2022-10-12 Online:2025-09-25 Published:2025-09-29
  • Contact: Yingming Wang E-mail:msymwang@hotmail.com

摘要:

虽然柔性的方向确定是方向距离函数(DDF)最具特色的优势,但不同方向将导致不同的结果也成为该方法饱受争议的技术痛点。针对这个问题,本文首先分析了现有DDF方法中方向确定的基本原理与局限性,并引入影子价格来明确一种新的内生方向设置机理;其次,以尽可能保障决策单元每一种投入/产出要素的改进空间为目标,构建最优影子价格的确定模型;进而,依托影子价格来构建新的最优内生方向与改进路径的确定方法——N-DDF方法。这种新的方法既能够摆脱对外生数据的依赖,实现方向确定的完全内生化,也能克服传统内生类方法缺乏理论内涵的局限性。通过理论拓展可以发现,N-DDF方法不仅适用于规模收益可变假设,也适用于规模收益不变假设、考虑非期望产出等多种不同的决策情境。最后,通过一个案例分析来说明N-DDF方法的有效性。

关键词: 数据包络分析, 方向距离函数, 内生方向, 影子价格, 收益最大化

Abstract:

Although the flexible direction determination is the most characteristic advantage of the direction distance function (DDF), the different results caused by different directions have also become the technological difficulty, which is controversial. In view of this problem, the basic principles and limitations of the existing direction determination methods in DDF are analyzed, and shadow price is introduced to clarify a new endogenous direction setting mechanism. Secondly, the improvement space of each input/output element of the decision-making unit to the maximum extent is taken as the goal to construct the optimal shadow price determination model. Sequentially, a new method for determining the optimal endogenous direction and improvement path, N-DDF method, is constructed based on the shadow price. The new method can not only get rid of the dependence on exogenous data and determine direction completely by the endogenous method, but also overcome the limitation of traditional endogenous methods that lacking economic connotation. Through theoretical expansion, it can be found that the N-DDF method is not only applicable to the hypothesis of variable returns to scale, but also applicable to others different decision scenarios, such as the hypothesis of constant returns to scale and considering undesirable outputs. Finally, an example analysis is given to illustrate the effectiveness of the N-DDF method.

Key words: data envelopment analysis, direction distance function, endogenous direction, shadow price, profit maximization

中图分类号: