主管:中国科学院
主办:中国优选法统筹法与经济数学研究会
   中国科学院科技战略咨询研究院

中国管理科学 ›› 2025, Vol. 33 ›› Issue (8): 123-130.doi: 10.16381/j.cnki.issn1003-207x.2022.1292

• • 上一篇    

基于部分抽样检验的在线异常监控方法

韩雄1, 杨扬1, 邓晓春1, 缑建杰1, 郭捷2(), 张晨3   

  1. 1.成都飞机工业(集团)有限责任公司,四川 成都 610404
    2.南京航空航天大学经济与管理学院,江苏 南京 210016
    3.清华大学工业工程系,北京 100084
  • 收稿日期:2022-06-13 修回日期:2023-05-16 出版日期:2025-08-25 发布日期:2025-09-10
  • 通讯作者: 郭捷 E-mail:guojie1144098@163.com
  • 基金资助:
    国家自然科学基金项目(72271138);国家自然科学基金项目(71932006);国家自然科学基金项目(71901131);北京市自然科学基金项目(9222014);航空科学基金项目(2020Z063058001)

Partially Sampling Inspection Process Based Online Change Detection

Xiong Han1, Yang Yang1, Xiaochun Deng1, Jianjie Gou1, Jie Guo2(), Chen Zhang3   

  1. 1.Chengdu Aircraft Industrial (Group) Co. ,Ltd,Chengdu 610404,China
    2.College of Economics and Management,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China
    3.Department of Industrial Engineering,Tsinghua University,Beijing 100084,China
  • Received:2022-06-13 Revised:2023-05-16 Online:2025-08-25 Published:2025-09-10
  • Contact: Jie Guo E-mail:guojie1144098@163.com

摘要:

在生产系统中,管理者可以通过抽样检验的方式对系统中存在的异常进行实时监控。考虑到产品所需要检验的特性(变量)很多,而检验资源通常是有限的,例如人力或检验仪器,因此,在每一个时刻只能选择一部分特性进行检验,导致只能得到部分特性的不合格数。本文假设每个特性的不合格数服从二项分布,提出一个针对二项分布的高维数据流的基于部分抽样的在线异常监控方案。首先,本文将高维数据分解为平滑的正常信号和稀疏的异常信号。为了对变量间的相关性进行建模,正常信号被分解为背景基函数乘以相应的系数。对于稀疏异常参数的估计,假设其服从 spike-slab 分布,分布中的参数通过变分贝叶斯估计得到。然后,构造基于似然比检验的监控统计量对系统异常进行监控。最后,通过将监控统计量作为多臂老虎机问题中的收益函数,本文构造了一种基于 Thompson 采样的变量选择策略,很好地平衡了变量搜索的深度和广度,从而达到最小化异常监控延迟时间的目的。

关键词: 在线学习, 部分观测, 抽样检验, 二项分布, 稀疏异常

Abstract:

In manufacturing systems, practitioners rely on sampling inspection to detect real-time changes within the system. However, due to the large number of categories (variables) that need inspection and the limited availability of inspection resources such as human labor or instruments, only a subset of categories can be inspected at each time point. As a result, only partial observations of the defective numbers for each category can be obtained. To enable a prompt system change detection, it requires not only a powerful change detection scheme that can deal with partially observable data, but also an adaptive variable selection strategy to identify which set of variables to be observed for the next time point such that the change information can be reserved maximally. The challenge of online change detection is addressed for high-dimensional data streams following a binomial distribution, based on a partially sampling inspection process. First, high-dimensional data is decomposed into smooth normal signals and sparse abnormal signals. The normal signals are represented as a linear combination of basis functions multiplied by corresponding coefficients, capturing the correlations between variables. The anomalous parameter is modeled using a spike-slab distribution and variational Bayesian inference is employed to estimate the distribution parameters. Next, a likelihood ratio test is constructed as the detection statistic for detecting system changes. Furthermore, combinatorial multi-armed bandit (CMAB) algorithms are leveraged by treating the test statistics as the reward function. Specifically, a variable selection policy based on Thompson sampling is proposed, enabling the selection of the most anomalous categories for inspection at each time point and minimizing change detection delay. Through experimental evaluations, the results highlight its potential to improve the efficiency and accuracy of defect detection in manufacturing systems while considering the constraints of limited inspection resources.

Key words: online learning, partial observations, sampling inspection, binomial distribution, sparse change

中图分类号: