[1] |
Zhang C, Yan H, Lee S, et al. Weakly correlated profile monitoring based on sparse multi-channel functional principal component analysis[J]. IISE Transactions, 2018, 50(10):878-891.
|
[2] |
梁海玲, 白森, 李坚. 基于鲁棒稀疏PCA的工业异常检测[J]. 科学技术与工程, 2022, 22(15):6164-6171.
|
|
Liang H L, Bai S, Li J. Industrial anomaly detection based on robust sparse PCA[J]. Science Technology and Engineering, 2022, 22(15): 6164-6171.
|
[3] |
Yan H, Paynabar K, Shi J J. Anomaly detection in images with smooth background via smooth-sparse decomposition[J].Technometrics, 2017,59(1):102-114.
|
[4] |
覃凤婷, 杨有龙,仇海全.基于稀疏子空间的局部异常值检测算法[J].计算机工程与应用,2020,56(19):152-159.
|
|
Qin F T, Yang Y L, Qiu H Q. Sparse subspace-based method for local outlier detection[J].Computer Engineering and Applications, 2020, 56(19):152-159.
|
[5] |
Liu K B, Mei Y J, Shi J J. An adaptive sampling strategy for online high-dimensional process monitoring[J]. Technometrics, 2015, 57(3):305-319.
|
[6] |
Xian X C, Wang A D, Liu K B. A nonparametric adaptive sampling strategy for online monitoring of big data streams[J]. Technometrics, 2018,60(1):14-25.
|
[7] |
Wang A D, Xian X C, Tsung F, et al. A spatial-adaptive sampling procedure for online monitoring of big data streams[J]. Journal of Quality Technology, 2018, 50(4):329-343.
|
[8] |
Xian X C, Zhang C, Bonk S, et al. Online monitoring of big data streams: A rank-based sampling algorithm by data augmentation[J].Journal of Quality Technology, 2021,53(2):135-153.
|
[9] |
Meier L, van De Geer S, Buhlmann P. High-dimensional additive modeling[J]. The Annals of Statistics, 2009, 37(6B):3779-3821.
|
[10] |
Anandkumar A, Ge R, Hsu D, et al. Tensor decompositions for learning latent variable models[J]. Journal of Machine Learning Research, 2014,15(1):2773-2832.
|
[11] |
Yao F, Müller H G, Wang J L. Functional data analysis for sparse longitudinal data[J]. Journal of the American Statistical Association, 2005,100(470): 577-590.
|
[12] |
Yu K, Wu X D, Ding W, et al. Scalable and accurate online feature selection for big data[J]. ACM Transactions on Knowledge Discovery from Data, 2016, 11(2):1-39.
|
[13] |
Cai D, He X F, Han J W, et al. Graph regularized nonnegative matrix factorization for data representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(8):1548-1560.
|
[14] |
Wood S N, Goude Y, Shaw S. Generalized additive models for large data sets[J]. Journal of the Royal Statistical Society: Series C (Applied Statistics), 2015, 64(1):139-155.
|
[15] |
Ba S, Joseph V R. Composite Gaussian process models for emulating expensive functions[J]. The Annals of Applied Statistics, 2012,6(4):1838-1860.
|
[16] |
Zhang L M, Wang K B, Chen N. Monitoring wafers’ geometric quality using an additive Gaussian process model[J]. IIE Transactions, 2016, 48(1):1-15.
|
[17] |
Yan H, Paynabar K, Shi J J. Real-time monitoring of high-dimensional functional data streams via spatio-temporal smooth sparse decomposition[J]. Technometrics, 2018, 60(2):181-197.
|
[18] |
Montgomery D C. Introduction to statistical quality control[M].Hoboken, NJ, USA: John Wiley & Sons, 2009.
|
[19] |
Mitchell T J, Beauchamp J J. Bayesian variable selection in linear regression[J]. Journal of the American Statistical Association,1988, 83(404):1023-1032.
|
[20] |
Zhao N, Zhang H Y, Clark J J, et al. Composite kernel machine regression based on likelihood ratio test for joint testing of genetic and gene-environment interaction effect[J]. Biometrics, 2019, 75(2):625-637.
|
[21] |
Mansouri M, Hajji M, Trabelsi M, et al. An effective statistical fault detection technique for grid connected photovoltaic systems based on an improved generalized likelihood ratio test[J]. Energy, 2018, 159:842-856.
|
[22] |
Vincent F, Besson O. One-step generalized likelihood ratio test for subpixel target detection in hyperspectral imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(6):4479-4489.
|
[23] |
Bubeck S, Wang T Y, Viswanathan N. Multiple identifications in multi-armed bandits[C]// Proceedings of International Conference on Machine Learning, Atlanta, USA, June 16-21,ACM 2013: 258-285.
|
[24] |
Zhuang H L, Wang C, Wang Y F. Identifying outlier arms in multiarmed bandit[C]//Proceedings of Advances in Neural Information Processing Systems, Long Beach, USA, December 4-9 ,The MIT Press, 2017:30.
|
[25] |
Durand A, Gagne C. Thompson sampling for combinatorial bandits and its application to online feature selection[C]// Proceedings of Workshops at the Twenty-Eighth AAAI Conference on Artificial Intelligence, Québec City, Canada, July 27-31 ,AAAI, 2014:181.
|
[26] |
Kaufmann E, Korda N, Munos R. Thompson sampling: An asymptotically optimal finite-time analysis[C]// Proceedings of International Conference on Algorithmic Learning Theory, Lyon, France, October 29-31 ,PMLR, 2012: 199-213.
|