[1] |
Charnes A, Cooper W W, Rhodes E. Measuring the efficiency of decision making units[J]. European Journal of Operational Research, 1978,2(6):429-444.
|
[2] |
Muren, Liu C, Cui W. The relationships among group decision making units based on partial ordered set[J]. Computers & Industrial Engineering, 2023,179:109173.
|
[3] |
Wu J, Chu J, Sun J, et al. DEA cross-efficiency evaluation based on Pareto improvement[J]. European Journal of Operational Research, 2016,248(2):571-579.
|
[4] |
Andersen P, Petersen N C. A procedure for ranking efficient units in data envelopment analysis[J]. Management science, 1993,39(10):1261-1264.
|
[5] |
邓雪, 方雯. 基于DEA博弈交叉效率和投资者心理的模糊投资组合研究[J]. 运筹与管理, 2022,31(10):68-74.
|
|
Deng X, Fang W. Research on fuzzy portfolios based on DEA game cross-efficiency method and investor psychology [J]. Operations Research and Management Science, 2022,31(10):68-74.
|
[6] |
吴澎, 丁毅, 周礼刚, 等. 基于DEA交叉效率与冗余信息识别的大群体应急决策方法[J]. 系统工程理论与实践, 2022,42(10):2840-2852.
|
|
Wu P, Ding Y, Zhou L G, et al. Large group emergency decision-making method based on DEA cross-efficiency and redundant information identification[J]. Systems Engineering-Theory & Practice, 2022,42(10):2840-2852.
|
[7] |
梁晓星, 周志翔. 考虑城市群间竞争与合作关系的环境效率评价研究:基于交叉效率评价模型(英文)[J]. 中国科学技术大学学报, 2022,52(4):17-27+68.
|
|
Liang X X, Zhou Z X. Cooperation and competition among urban agglomerations in environmental efficiency measurement: A cross-efficiency approach[J]. Journal of University of Science and Technology of China, 2022,52(4):17-27+68.
|
[8] |
郑兵云, 杨宏丰. “一带一路”中国沿海城市港口效率评价——基于DEA博弈交叉效率-Tobit模型[J]. 数理统计与管理, 2021,40(3):502-514.
|
|
Zheng B Y, Yang H F. Evaluation of port efficiency of China’s coastal cities in “the belt and road”:Based on DEA game crossover efficiency-Tobit model[J]. Journal of Applied Statistics and Management, 2021,40(3):502-514.
|
[9] |
薛凯丽, 范建平, 匡海波, 等. 基于两阶段交叉效率模型的中国商业银行效率评价[J]. 中国管理科学, 2021,29(10):23-34.
|
|
Xue K L, Fan J P, Kuang H B, et al. Efficiency evaluation of China commercial banks based on two-stage cross efficiency model[J]. Chinese Journal of Management Science, 2021,29(10):23-34.
|
[10] |
程国庆, 王应明. 基于三阶段DEA交叉效率模型的决策单元排序与聚类——基于中国集体所有制建筑业企业效率的实证分析[J]. 系统科学与数学, 2020,40(12):2416-2430.
|
|
Cheng G Q, Wang Y M. Research on decision unit ordering and clustering based on three-stage DEA cross-efficiency model for China’s collectively owned construction enterprises[J]. Journal of Systems Science and Mathematical Sciences, 2020,40(12):2416-2430.
|
[11] |
Banker R D. A game theoretic approach to measuring efficiency[J].European Journal of Operational Research, 1980,5(4):262-266.
|
[12] |
程幼明, 姚丽, 何惠妍, 等. 一种考虑DMU间交叉竞争的博弈效率DEA评价方法[J]. 控制与决策, 2018,33(9):1677-1685.
|
|
Cheng Y M, Yao L, He H Y, et al. An evaluation method for DEA game efficiency considering cross-competition game of DMUs[J]. Control and Decision, 2018,33(9):1677-1685.
|
[13] |
木仁, 唐格斯, 曹莉, 等. 基于博弈理论的广义模糊数据包络分析方法[J]. 内蒙古大学学报(自然科学版), 2020,51(3):268-278.
|
|
Mu R, Tang G S, Cao L, et al. Generalized fuzzy data envelopment analysis method based on game theory[J]. Journal of Inner Mongolia University (Natural Science Edition), 2020,51(3):268-278.
|
[14] |
Ramezani-Tarkhorani S, Khodabakhshi M, Mehrabian S, et al. Ranking decision-making units using common weights in DEA[J]. Applied Mathematical Modelling, 2014,38(15-16):3890-3896.
|
[15] |
蓝以信, 温槟檐, 王应明. 基于公共权重的区间DEA效率评价及其排序方法研究[J]. 运筹学学报, 2021,25(4):58-68.
|
|
Lan Y X, Wen B Y, Wang Y M. A common-weights interval DEA approach for efficiency evaluation and its ranking method[J]. Operations Research Transactions, 2021,25(4):58-68.
|
[16] |
熊文涛, 冯育强, 雍龙泉. 基于公共权重和理想决策单元的DEA排序方法[J]. 系统工程, 2016,34(3):124-128.
|
|
Xiong W T, Feng Y Q, Yong L Q. A method for ranking decision making units by common set of weights and ideal decision making unit in DEA[J]. Systems Engineering, 2016,34(3):124-128.
|
[17] |
Ruiz J L, Sirvent I. Common benchmarking and ranking of units with DEA[J]. Omega, 2016,65:1-9.
|
[18] |
马生昀, 马占新. 基于样本前沿面移动的广义DEA有效性排序[J]. 系统工程学报,2014,29(4):443-457.
|
|
Ma S Y, Ma Z X. Ranking of generalized DEA efficiency based on the moving of sample frontier[J]. Journal of Systems Engineering, 2014,29(4):443-457.
|
[19] |
Muren, Liu C, Cui W, et al. Special relationship among decision making units based on partially ordered set and new evaluation and projection methods[J]. Journal of Systems Science and Systems Engineering, 2022,31(2):226-246.
|
[20] |
Rouyendegh B D, Oztekin A, Ekong J, et al. Measuring the efficiency of hospitals: A fully-ranking DEA-FAHP approach[J]. Annals of Operations Research, 2019,278(1):361-378.
|
[21] |
卞亦文, 许皓.基于虚拟包络面和TOPSIS的DEA排序方法[J].系统工程理论与实践, 2013,33(2):482-488.
|
|
Bian Y W, Xu H. DEA ranking method based upon virtual envelopment frontier and TOPSIS[J].Systems Engineering-Theory & Practice,2013,33(2):482-488.
|
[22] |
Ali Rakhshan S. Efficiency ranking of decision making units in data envelopment analysis by using TOPSIS-DEA method[J]. Journal of the Operational Research Society, 2017,68(8):906-918.
|
[23] |
Salo A, Punkka A. Ranking intervals and dominance relations for ratio-based efficiency analysis[J]. Management Science, 2011, 57(1): 200-214.
|
[24] |
de Farias Aires R F, Ferreira L. The rank reversal problem in multi-criteria decision making: A literature review[J].Pesquisa Operacional,2018,38(2): 331-362.
|
[25] |
Kadziński M, Labijak A, Napieraj M. Integrated framework for robustness analysis using ratio-based efficiency model with application to evaluation of Polish airports[J]. Omega, 2017, 67: 1-18.
|
[26] |
Labijak-Kowalska A, Kadziński M. Exact and stochastic methods for robustness analysis in the context of Imprecise Data Envelopment Analysis[J]. Operational Research, 2023, 23(1): 22.
|
[27] |
Li F, Yan Z, Zhu Q, et al. Allocating a fixed cost across decision making units with explicitly considering efficiency rankings[J]. Journal of the Operational Research Society, 2021, 72(6): 1432-1446.
|
[28] |
Chen L, Guo M, Li Y, et al. Efficiency intervals, rank intervals and dominance relations of decision-making units with fixed-sum outputs[J]. European Journal of Operational Research, 2021, 292(1): 238-249.
|
[29] |
Li Y, Shi X, Emrouznejad A, et al. Ranking intervals for two-stage production systems[J]. Journal of the Operational Research Society, 2020,71(2): 209-224.
|
[30] |
Lei X, Li Y, Morton A. Dominance and ranking interval in DEA parallel production systems[J]. OR Spectrum, 2022, 44(2): 649-675.
|
[31] |
Chu J, Wei F, Wu J, et al. Selecting common projection direction in DEA directional distance function based on directional extensibility[J]. Computers & Industrial Engineering, 2021,154:107105.
|