中国管理科学 ›› 2023, Vol. 31 ›› Issue (4): 35-45.doi: 10.16381/j.cnki.issn1003-207x.2020.1190cstr: 32146.14.j.cnki.issn1003-207x.2020.1190
郝俊1, 李建平1, 冯倩倩2, 3, 孙晓蕾2, 3
收稿日期:2020-06-22
修回日期:2021-03-12
出版日期:2023-04-20
发布日期:2023-05-06
通讯作者:
孙晓蕾(1981-),女(汉族),山东烟台人,中国科学院科技战略咨询研究院,研究员,博士,研究方向:风险管理,Email:xlsun@casisd.cn.
E-mail:xlsun@casisd.cn
基金资助:HAO Jun1, LI Jian-ping1, FENG Qian-qian2, 3, SUN Xiao-lei2, 3
Received:2020-06-22
Revised:2021-03-12
Online:2023-04-20
Published:2023-05-06
Contact:
孙晓蕾
E-mail:xlsun@casisd.cn
摘要: 新冠肺炎疫情冲击,叠加油价下跌等不确定性因素使得全球金融市场承受巨大的下行压力;且金融市场内部的联动性不断增强,金融变量间的波动溢出效应往往会放大风险水平,因此国际社会对美国金融市场动荡是否会演化成金融危机保持极大担忧与高度警惕。在此背景下,如何有效刻画金融市场间的溢出效应,并实现对美国金融危机早期预警已成为关注焦点。对此,本文首先考虑疫情冲击下金融市场波动特点,构建涵盖9个市场、涉及15项指标的危机预警指标体系;其次,引入广义预测误差方差分解和复杂网络技术,刻画金融市场间的溢出效应;最后,将溢出效应引入传统KLR模型之中,实现了考虑指标间溢出效应的危机预警信号综合集成。结果表明:基于溢出效应强度构建的综合预警模型能够更为精准地捕捉危机信号;危机预警信号在2020年4月已接近2008年金融危机的早期水平,但仍存在一定距离,需要持续关注其未来走势。
中图分类号:
郝俊,李建平,冯倩倩, 等. 基于溢出效应的金融危机早期预警方法研究[J]. 中国管理科学, 2023, 31(4): 35-45.
HAO Jun,LI Jian-ping,FENG Qian-qian, et al. Early Warning of Financial Crisis Based on the Spillover Effects[J]. Chinese Journal of Management Science, 2023, 31(4): 35-45.
| [1] Hazera A, Quirvan C, Triki A. Too big to fail and bank loan accounting in developing nations: evidence from the Mexican financial crisis[J]. Research in Accounting Regulation, 2017, 29(2): 109-118. [2] 张雪彤,张卫国,王超.发达市场与新兴市场的尾部风险—溢出、传染与传染动因检验[J].中国管理科学2023, DOI:10.16381/j.cnki.issn1003-207x.2021.2441.Zu Xuetong, Zhang Weiguo, Wang Chao. Tail risks in developed and emerging markets—Test of spillover, contagion and contagion determinants[J]. Chinese Journal of Management Science, 2023, DOI:10.16381/j.cnki.issn1003-207x.2021.2441. [3] 杨子晖, 陈雨恬, 张平淼. 重大突发公共事件下的宏观经济冲击、金融风险传导与治理应对[J]. 管理世界, 2020, 36(5): 13-35+17.Yang Zihui, Chen Yutian, Zhang Pingmiao. Macroeconomic shock, financial risk transmission and governance response to major public emergencies[J]. Management World, 2020, 36(5): 13-35+17. [4] 刘世锦, 韩阳, 王大伟. 基于投入产出架构的新冠肺炎疫情冲击路径分析与应对政策[J]. 管理世界, 2020, 36(5): 1-12+51+263.Liu Shijin, Han Yang, Wang Dawei. An impact path analysis of covid-19 outbreak in china and policy response[J]. Management World, 2020, 36(5): 1-12+51+263. [5] Salvatore D. Growth and trade in the United States and the world economy: overview[J]. Journal of policy modeling. 2020, 42(4): 750-759. [6] Bekiros S D. Contagion, decoupling and the spillover effects of the US financial crisis: evidence from the BRIC markets[J]. International Review of Financial Analysis, 2014, 33: 58-69. [7] Chadwick M G. Dependence of the “Fragile Five” and “Troubled Ten” emerging market financial systems on US monetary policy and monetary policy uncertainty[J]. Research in International Business and Finance, 2019, 49: 251-268. [8] Frankel J A, Rose A K. Currency crashes in emerging markets: an empirical treatment[J]. Journal of International Economics, 1996, 41: 351-366. [9] Sachs J, Tornell A, Velasco A. The Mexican peso crisis: sudden death or death foretold[J]. Journal of International Economics, 1996, 41: 265-283. [10] Kaminsky G, Lizondo S, Reinhart C M. Leading indicators of currency crise[J]. Palgrave Macmillan Journals, 1998, 45(1): 1-48. [11] Peng Duan, Bajona Cuan. China’s vulnerability to currency crisis: a KLR signals approach[J]. China Economic Review, 2008, 19(2): 138-151. [12] Abdelsalam M A M, Abdel-Latif H. An optimal early warning system for currency crises under model uncertainty[J]. Central Bank Review. 2020, 20(3): 99-107. [13] Illing M, Liu Ying. An index of financial stress for canada, bank of canada working paper[R]. Working Paper, 2003. [14] Frankel J, Saravelos G. Can leading indicators assess country vulnerability? Evidence from the 2008-2009 Global Financial Crisis[J]. Journal of International Economics, 2012, 87(2): 216-231. [15] Coudert V, Idier J. Reducing model risk in early warning systems for banking crises in the euro area [J]. International Economics, 2018, 156: 98-116. [16] Dawood M, Horsewood N, Strobel F. Predicting sovereign debt crises: an early warning system approach [J]. Journal of Financial Stability, 2017, 28: 16-28. [17] 李建平, 王军, 冯倩倩,等. 基于多元驱动因素的主权CDS利差预测研究[J]. 计量经济学报, 2021,1(2): 362-376.Li Jianping, Wang Jun, Feng Qianqian, et al. Forecasting sovereign CDS spreads based on multiple determinants[J]. China Journal of Econometrics, 2021,1(2): 362-376. [18] 刘超,张瑞雪,朱相宇.金融风险与宏观经济风险的交互行为研究[J].管理评论,2022,34(2):46-61.Liu Chao, Zhang Ruixue, Zhu Xiangyu. Research on the interaction between financial risk and macroeconomic risk[J]. Management Review, 2022,34(2):46-61. [19] Feng Qianqian, Wang Yijing, Sun Xiaolei, et al. What drives cross-border spillovers among sovereign CDS, foreign exchange and stock markets? [J]. Global Finance Journal, 2022, DOI: 10.1016/j.gfj.2022.100773 [20] 傅强,石泽龙.系统性金融风险的联合网络关联度测量及频率研究——基于局部平稳的非参数时变VHAR模型[J].中国管理科学,2023,DOI:10.16381/j.cnki.issn1003-207x.2021.1266.Fu Qiang, Shi Zelong. Research on frequency of the joint network connectedness of systemic financial risks in china: based on the locally stationary non-parametric time-varying vector HAR model[J]. Chinese Journal of Management Science, 2023, DOI:10.16381/j.cnki.issn1003-207x.2021.1266. [21] 范宏, 陈乃熙.基于溢出效应的多级风险传染机理及实证研究[J].中国管理科学,2020, DOI:10.16381/j.cnki.issn1003-207x.2020.1572.Fan Hong, Chen Naixi. Multi-stage risk contagion mechanism and empirical study based on spillover effect[J]. Chinese Journal of Management Science, 2020, DOI:10.16381/j.cnki.issn1003-207x.2020.1572. [22] 孙灏, 朱晓谦, 李建平. 考虑财务报告中文本风险信息的财务困境预测. 系统管理学报, 2022, 31(6): 1204-1215.Sun Hao, Zhu Xiaoqian, Li Jianping. Financial distress prediction based on textual risk disclosures in financial reports[J]. Journal of Systems & Management, 2022, 31(6): 1204-1215. [23] Flavin T J, Sheenan L. The Role of U.S. subprime mortgage-backed assets in propagating the crisis: contagion or interdependence? [J]. The North American Journal of Economics and Finance, 2015, 34: 167-186. [24] IMF. Global Financial Stability Report: Responding to the Financial Crisis and Measuring Systemic Risk [R]. 2009. [25] 杨子晖, 周颖刚. 全球系统性金融风险溢出与外部冲击[J]. 中国社会科学, 2018(12): 69-90+200-201.Yang Zihui, Zhou Yinggang. Global systemic financial risk spillovers and their external shocks[J]. Social Sciences in China, 2018(12): 69-90+200-201. [26] 姚晓阳, 孙晓蕾, 李建平. 考虑市场相关性的中国金融压力指数构建方法与实证[J]. 管理评论, 2019, 31(4): 34-41.Yao Xiaoyang, Sun Xiaolei, Li Jianping. China financial stress index under correlations between markets[J]. Management Review, 2019, 31(4): 34-41. [27] 姚晓阳, 孙晓蕾, 吴登生,等. 基于互信息熵的国家风险相关性研究[J]. 系统工程理论与实践, 2015, 35(7): 1657-1665.Yao Xiaoyang, Sun Xiaolei, Wu Dengsheng, et al. Correlation research of country risk based on mutual information[J]. Systems Engineering Theory & Practice, 2015, 35(7): 1657-1665. [28] 赵林海, 陈名智. 金融机构系统性风险溢出和系统性风险贡献——基于滚动窗口动态Copula模型双时变相依视角[J]. 中国管理科学,2021,29(7):71-83.Zhao Linhai, Chen Mingzhi. Systemic risk spillovers and systemic risk contributions of financial institutions in china: a perspective of dual time-varying dependence of rolling window dynamic copula model[J]. Chinese Journal of Management Science,2021,29(7):71-83. [29] 钟婉玲, 李海奇, 杨胜刚. 国际油价、宏观经济变量与中国股市的尾部风险溢出效应研究[J]. 中国管理科学, 2022,30(2):27-37.Zhong Wanling, Li Haiqi, Yang Shenggang. Tail risk spillover effects among crude oil price, macroeconomic variables, and china’s stock market[J]. Chinese Journal of Management Science, 2022,30(2):27-37. [30] Diebold F X, Yilmaz K. Better to give than to receive: predictive directional measurement of volatility spillovers[J]. International Journal of Forecasting, 2012, 28(1): 57-66. |
| [1] | 姚银红, 王晓旭, 陈炜, 陈振松. 基于Transformer-LSTM分位数回归的全球股市极端风险溢出研究[J]. 中国管理科学, 2025, 33(8): 1-13. |
| [2] | 吴伟平, 林雨, 金成能, 唐振鹏. 随机市场深度下基于风险管理和交易约束的最优执行问题[J]. 中国管理科学, 2025, 33(8): 14-25. |
| [3] | 田军, 董赞强, 李雅丽. 基于预付账款融资模式的供应链融资策略研究[J]. 中国管理科学, 2025, 33(7): 272-283. |
| [4] | 杨科, 刘鑫, 田凤平. 中国与其他主要新兴市场国家间股市极端风险的跨市场传染[J]. 中国管理科学, 2025, 33(7): 44-53. |
| [5] | 欧阳资生, 周学伟. 中国金融机构系统性风险回测与关联研究[J]. 中国管理科学, 2025, 33(6): 14-26. |
| [6] | 沈根祥, 周泽峰. 拟得分驱动条件异方差自回归极差模型及其实证研究[J]. 中国管理科学, 2025, 33(5): 34-44. |
| [7] | 冯浩原, 吴颉, 于安琪, 郭琨. 杠杆交易会提高股票市场的流动性吗?——基于微观个股层面的实证分析[J]. 中国管理科学, 2025, 33(4): 1-11. |
| [8] | 姚海祥, 刘秋瑜, 杨晓光. 增强还是减弱:新型金融与传统金融行业之间系统性风险溢出[J]. 中国管理科学, 2025, 33(3): 1-12. |
| [9] | 王纲金, 马欣宇, 谢赤. 基于尾部风险溢出网络的全球外汇市场关联性研究[J]. 中国管理科学, 2025, 33(3): 13-23. |
| [10] | 许帅, 邵帅, 何贤杰. 业绩说明会前瞻性信息对分析师盈余预测准确性的影响[J]. 中国管理科学, 2025, 33(3): 34-44. |
| [11] | 孙庆文, 靳玉, 郑立梅, 孙子涵. 企业净资产收益率操纵度量模型与识别方法[J]. 中国管理科学, 2025, 33(2): 1-15. |
| [12] | 胡玉真, 刘建霞. 基于消冗时段网络的集装箱班轮干扰恢复研究[J]. 中国管理科学, 2025, 33(2): 118-130. |
| [13] | 马梦迪, 李烁, 王玉涛. 中国分析师报告有效性研究:特定信息与投资者有限关注[J]. 中国管理科学, 2025, 33(2): 38-49. |
| [14] | 宋诗佳, 田飞, 李汉东. 基于时变极值方法的VaR预测模型以及应用[J]. 中国管理科学, 2025, 33(2): 61-70. |
| [15] | 李星毅, 李仲飞, 李其谦, 刘昱君, 唐文金. 基于机器学习的资产收益率预测研究综述[J]. 中国管理科学, 2025, 33(1): 311-322. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
||