[1] Markowitz H. Portfolio selection[J]. Journal of Finance,1952,7(1):77-91.[2] Merton R C. Lifetime portfolio selection under uncertainty:The continuous-time case[J]. Review of Economics and Statistics 1969,51(3),247-257.[3] Cox J, Ross S, Rubinstein M, et al. Option pricing:A simplified approach[J]. Journal of Financial Economics, 1979, 7(3):229-263.[4] Sharpe W F, Tint L G. Liabilities-a new approach[J]. Journal of Portfolio Management,1990,16(2):5-10.[5] Leippold M, Trojani F, Vanini P. A geometric approach to multi-period mean-variance optimization of assets and liabilities[J]. Journal of Economics Dynamics and Control,2004,28(6):1079-1113.[6] Chiu M C, Li D. Asset and liability management under a continuous-time mean-variance optimization framework[J]. Insurance:Mathematics and Economics,2006,39(3):330-355.[7] Papi M, Sbaraglia S. Optimal asset-liability management with constraints:A dynamic programming approach[J]. Applied Mathematics and Computation,2006,173(1):306-349.[8] Deelstra G, Grasselli M, Koehl P F. Optimal investment strategies in a CIR framework[J].Journal of Applied Probability,2000,37(4):936-946.[9] Xie S, Li Z, Wang S Y. Continuous-time portfolio selection with liability:Mean-variance model and stochastic LQ approach[J]. Insurance:Mathematics and Economics,2008,42(3):943-953.[10] Grasselli M. A stability result for the HARA class with stochastic interest rates[J]. Insurance:Mathematics and Economics,2003,33(3):611-627.[11] Korn R, Kraft H. A stochastic control approach to portfolio problems with stochastic interest rates[J].SIAM Journal of Control and optimization,2001,40(4):1250-1269.[12] Gao Jianwei. Stochastic optimal control of DC pension funds[J]. Insurance:Mathematics and Economics, 2008,42(3):1159-1164.[13] Boulier J F, Huang S, Taillard G. Optimal management under stochastic interest rates:The case of a protected defined contribution pension fund[J]. Insurance:Mathematics and Economics,2001,28(2):173-189.[14] Ma Jianjing, Wu Rong. On a barrier strategy for the classical risk process with constant interest force[J].Chinese Journal of Engineering Mathematics,2009,26(6):1133-1136.[15] Ho T S Y, Lee S B. Term structure movements and pricing interest contingent claims[J]. Journal of Finance, 1986,41(5):1011-1029.[16] Zhou X Y, Li D. Continuous-time mean-variance portfolio selection:A stochastic LQ framework[J]. Applied Mathematics&Optimization,2000,42(1):19-33.[17] Kim T S, Omberg E. Dynamic nonmyopic portfolio behavior[J].The Review of Financial Studies, 1996, 9(1),141-161.[18] 项筱玲,韦维.时间最优控制的Mayer逼近[J].贵州大学学报, 2003,20(2):111-115.[19] Potts C, Giddens T D, Yadav S B. The development and evaluation of an improved genetic algorithm based on migration and artificial selection[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1994,24(1):73-86.[20] Cairns A J G, Blake D, Dowd K. Stochastic lifestyling:Optimal dynamic asset allocation for defined contribution pension plans[J]. Journal of Economic Dynamic and Control, 2004,30(5):843-877.[21] Lions P L, Sougarnidis P E. Differential games, optimal control and directional derivatives of viscosity solutions of Bellman's and Issac's equation[J]. Siam J Control&Optimization,1984,23(4)566-583.[22] Sanjiv R D, Rangarajan K. An approximation algorithm for optimal consumption/investment problems[J]. International Journal of Intelligent Systems in Accounting, Finance&Management,2002,11(2):55-69.[23] 徐林明,林志炳,李美娟,等. 基于模糊Borda法的动态组合评价方法及其应用研究[J]. 中国管理科学,2017,25(2):165-173.[24] 张初兵,荣喜民.仿射利率模型下确定缴费型养老金的最优投资[J]. 系统工程理论与实践,2012,32(5):1048-1056.[25] 郭文英. 基于贝叶斯学习的动态投资组合选择[J]. 中国管理科学,2017,25(8):39-45.[26] 费为银,吕会影,余敏秀.通胀服从均值回复过程的最优消费和投资决策[J].系统工程,2014, 29(6):791-868.[27] 卞世博,刘海龙.背景风险下DC型养老基金的最优投资策略-基于Legendre转换对偶解法[J].管理工程学报,2013, 27(3):145-149.[28] 李斌,林彦,唐闻轩. ML-TEA:一套基于机器学习和技术分析的量化算法[J]. 系统工程理论与实践, 2017, 37(5):1089-1100.[29] 肖进,孙海燕,刘敦虎,等. 基于GMDH混合模型的能源消费量预测研究[J].中国管理科学,2017,25(12):158-166.[30] 龙勇,苏振宇,汪於. 基于季节调整和BP神经网络的月度负荷预测[J]. 系统工程理论与实践, 2018, 38(4):1052-1060. |