1 |
Garcia S, Luengo J, Sáez J A, et al. A survey of discretization techniques: Taxonomy and empirical analysis in supervised learning[J].IEEE Transactions on Knowledge and Data Engineering,2013,25(4): 734-750.
|
2 |
章彤,迟国泰. 基于最优信用特征组合的违约判别模型——以中国A股上市公司为例[J]. 系统工程理论与实践, 2020, 40(10): 2546-2562.
|
|
Zhang T, Chi G T. Default discrimination model based on optimal credit feature portfolio: A case of Chinese A-share listed companies[J].Systems Engineering-Theory & Practice, 2020, 40(10): 2546-2562.
|
3 |
Liu H, Setiono R. Chi2: feature selection and discretization of numeric attributes[C].Proceedings of 7th IEEE International Conference on Tools with Artificial Intelligence,Herndon,VA,USA, November 05-08, 1995.
|
4 |
Kim K, Han I. Genetic algorithms approach to feature discretization in artificial neural networks for the prediction of stock price index[J]. Expert Systems with Applications, 2000, 19(2): 125-132.
|
5 |
Sharmin S, Shoyaib M, Ali A A, et al. Simultaneous feature selection and discretization based on mutual information[J]. Pattern Recognition, 2019, 91: 162-174.
|
6 |
Mohamed R, Azah N. A new discretization approach of bat and K-means[J]. International Journal of Advanced Computer Science & Applications, 2021, 12(1): 510-516.
|
7 |
赵宇,黄思明,陈锐. 数据分类中的特征选择算法研究[J]. 中国管理科学, 2013, 21(6): 38-46.
|
|
Zhao Y, Huang S, Chen R. Research on feature selection algorithm in data classification[J]. Chinese Journal of Management Science, 2013, 21(6): 38-46.
|
8 |
肖进,唐静,刘敦虎,等. 基于改进GMDH的目标客户选择模型研究[J]. 中国管理科学,2015, 23(10): 162-169.
|
|
Xiao J, Tang J, Liu D H, et al. Research on target customer selection model based on improved GMDH[J]. Chinese Journal of Management Science, 2015, 23(10): 162-169.
|
9 |
Oztekin A, Al-Ebbini L, Sevkli Z, et al. A decision analytic approach to predicting quality of life for lung transplant recipients: A hybrid genetic algorithms-based methodology[J]. European Journal of Operational Research, 2018, 266(2): 639-651.
|
10 |
石宝峰,王静. 基于ELECTRE III的农户小额贷款信用评级模型[J].系统管理学报,2018,27(5): 854-862.
|
|
Shi B F, Wang J. A credit rating model for agricultural microfinance based on ELECTRE III[J]. Journal of Systems & Management, 2018, 27(5): 854-862.
|
11 |
Gao W, Hu L, Zhang P, et al. Feature selection by integrating two groups of feature evaluation criteria[J]. Expert Systems with Applications, 2018, 110: 11-19.
|
12 |
周颖,苏小婷. 基于最优指标组合的企业信用风险预测[J]. 系统管理学报, 2021, 30(5): 817-838.
|
|
Zhou Y, Su X T. Corporate credit risk prediction based on optimal indicator combination[J]. Journal of Systems & Management, 2021, 30(5): 817-838.
|
13 |
Jiménez-Cordero A, Morales J M, Pineda S. A novel embedded min-max approach for feature selection in nonlinear Support Vector Machine classification[J]. European Journal of Operational Research, 2021, 293(1): 24-35.
|
14 |
袁先智,周云鹏,严诚幸,等. 财务欺诈风险特征筛选框架的建立和应用[J]. 中国管理科学, 2022, 30(3): 43-54.
|
|
Yuan X Z, Zhou Y P, Yan C X, et al. Establishment and application of a screening framework for financial fraud risk characteristics[J]. Chinese Journal of Management Science, 2022, 30(3): 43-54.
|
15 |
沈隆,周颖. 基于大数据变量最优组合的违约预测模型——以中国小企业为例[J]. 系统工程理论与实践. 2024, 44(3): 912-931.
|
|
Shen L, Zhou Y. Default prediction model based on optimal combination of big data variables: A case study of Chinese small enterprises [J]. Systems Engineering - Theory & Practice, 2024, 44(3): 912-931.
|
16 |
Sun Y, Chai N, Dong Y, et al. Assessing and predicting small industrial enterprises’ credit ratings: A fuzzy decision-making approach[J]. International Journal of Forecasting, 2022, 38(3): 1158-1172.
|
17 |
Lu Y, Yang L, Shi B, et al. A novel framework of credit risk feature selection for SMEs during industry 4.0[J]. Annals of Operations Research, 2022: 1-28.
|
18 |
Valero-Carreras D, Alcaraz J, Landete M. Comparing two SVM models through different metrics based on the confusion matrix[J]. Computers & Operations Research, 2023, 152: 106131.
|
19 |
Zhang Y, Zhu R, Chen Z, et al. Evaluating and selecting features via information theoretic lower bounds of feature inner correlations for high-dimensional data[J]. European Journal of Operational Research, 2021, 290(1): 235-247.
|
20 |
Altman E I. Financial ratios, discriminant analysis and the prediction of corporate bankruptcy[J]. The Journal of Finance (New York), 1968, 23(4): 589-609.
|
21 |
Murphy C K, Benaroch M. Adding value to induced decision trees for time-sensitive data[J]. INFORMS Journal on Computing, 1997, 9(4): 385-396.
|
22 |
韩璐,韩立岩. 正交支持向量机及其在信用评分中的应用[J]. 管理工程学报, 2017, 31(2): 128-136.
|
|
Han L, Han L Y. Orthogonal support vector machine and its application in credit scoring[J]. Journal of Industrial Engineering and Engineering Management, 2017, 31(2): 128-136.
|
23 |
Ma L, Zhao X, Zhou Z, et al. A new aspect on P2P online lending default prediction using meta-level phone usage data in China[J]. Decision Support Systems, 2018, 111: 60-71.
|
24 |
Berg T, Burg V, Gombović A, et al. On the rise of fintechs: Credit scoring using digital footprints[J]. The Review of Financial Studies, 2020, 33(7): 2845-2897.
|
25 |
杨莲,石宝峰. 基于Focal Loss修正交叉熵损失函数的信用风险评价模型及实证[J]. 中国管理科学, 2022, 30(5): 65-75.
|
|
Yang L, Shi B F. Credit risk evaluation model and empirical evidence based on focal loss modified cross-entropy loss function[J]. Chinese Journal of Management Science, 2022, 30(5): 65-75.
|
26 |
Odhiambo O E, Onyango O G, Waema K M. Feature selection for classification using principal component analysis and information gain[J]. Expert Systems with Applications, 2021, 174: 114765.
|
27 |
Xiao J, Zhong Y, Jia Y, et al. A novel deep ensemble model for imbalanced credit scoring in internet finance[J]. International Journal of Forecasting, 2024, 40(1): 348-372.
|
28 |
Xu C, Chang W, Liu W. Data-driven decision model based on local two-stage weighted ensemble learning[J]. Annals of Operations Research, 2023, 325(2): 995-1028.
|
29 |
Audrino F, Kostrov A, Ortega J. Predicting U.S. Bank failures with MIDAS logit models[J]. Journal of Financial and Quantitative Analysis, 2019, 54(6): 2575-2603.
|
30 |
Han J, Jiang D, Li L. Automatic accuracy assessment via hashing in multiple-source environment[J]. Expert Systems with Applications, 2010, 37(3): 2609-2620.
|
31 |
Abdou H A. Genetic programming for credit scoring: The case of egyptian public sector banks[J]. Expert Systems with Applications, 2009, 36(9): 11402-11417.
|
32 |
Wang K. Unified distributed robust regression and variable selection framework for massive data[J]. Expert Systems with Applications, 2021, 186: 115701.
|
33 |
He H, Zhang W, Zhang S. A novel ensemble method for credit scoring: Adaption of different imbalance ratios[J]. Expert Systems with Applications, 2018, 98: 105-117.
|
34 |
Hand D J. Measuring classifier performance: A coherent alternative to the area under the ROC curve[J]. Machine Learning, 2009, 77(1): 103-123.
|
35 |
Jones S. Corporate bankruptcy prediction: A high dimensional analysis[J]. Review of Accounting Studies,2017, 22(3): 1366-1422.
|
36 |
戴亦一,张鹏东,潘越. 老赖越多,贷款越难?——来自地区诚信水平与上市公司银行借款的证据[J]. 金融研究, 2019(8): 77-95.
|
|
Dai Y Y, Zhang P D, Pan Y. The more old scoundrels, the more difficult it is to get a loan?——Evidence from regional integrity level and bank borrowing of listed companies[J]. Journal of Financial Research, 2019(8): 77-95.
|
37 |
Dodd L E, Pepe M S. Semiparametric regression for the area under the receiver operating characteristic curve[J]. Journal of the American Statistical Association, 2003, 98(462): 409-417.
|
38 |
周颖,沈隆. 基于Brown-Mood中位数检验的小企业债信评级体系[J].系统管理学报,2020,29(6): 1043-1055.
|
|
Zhou Y, Shen L. Small business debt credit rating system based on Brown-mood median test[J]. Journal of Systems & Management, 2020, 29(6): 1043-1055.
|