1 |
石敏俊,袁永娜,周晟吕,等.碳减排政策:碳税、碳交易还是两者兼之?[J].管理科学学报,2013,16(9):9-19.
|
|
Shi M J, Yuan Y N, Zhou S L, et al. Carbon tax,cap-and-trade or mixed policy: Which is better for carbon mitigation?[J]. Journal of Management Sciences in China, 2013,16(9):9-19.
|
2 |
王明喜,李明,郭冬梅,等.碳排放权的非对称拍卖模型及其配置效率[J].管理科学学报,2019,22(7):34-51.
|
|
Wang M X, Li M, Guo D M, et al. An asymmetric auction model of carbon emission rights and its allocation efficiency[J]. Journal of Management Sciences in China, 2019,22(7):34-51.
|
3 |
高杨,李健.基于EMD-PSO-SVM误差校正模型的国际碳金融市场价格预测[J].中国人口·资源与环境,2014,24(6):163-170.
|
|
Gao Y, Li J. International carbon finance market price prediction based on EMD-PSO-SVM error correction model[J]. China Population,Resources and Environment, 2014,24(6):163-170.
|
4 |
张晨,丁洋,汪文隽.国际碳市场风险价值度量的新方法——基于EVT-CAViaR模型[J].中国管理科学,2015,23(11):12-20.
|
|
Zhang C, Ding Y, Wang W J. An innovation of estimating value at risk of international carbon market: Conditional autoregressive value at risk models with refinements from extreme value theory[J]. Chinese Journal of Management Science, 2015,23(11):12-20.
|
5 |
朱帮助,魏一鸣.基于GMDH-PSO-LSSVM的国际碳市场价格预测[J].系统工程理论与实践,2011,31(12):2264-2271.
|
|
Zhu B Z, Wei Y M. Carbon price prediction based on integration of GMDH, particle swarm optimization and least squares support vector machines[J]. Systems Engineering-Theory & Practice, 2011,31(12):2264-2271.
|
6 |
Zhu B Z, Ye S X, Wang P, et al. A novel multiscale nonlinear ensemble leaning paradigm for carbonprice forecasting[J]. Energy Economics, 2018, 70: 143-157.
|
7 |
Byun S J, Cho H. Forecasting carbon futures volatility using GARCH models with energy volatilities[J]. Energy Economics, 2013, 40: 207-221.
|
8 |
Koop G, Tole L. Forecasting the European carbon market[J]. Journal of the Royal Statistical Society: Series A (Statistics in Society),2013, 176(3): 723-741.
|
9 |
María E S, Francesco V, María M B. Understanding volatility dynamics in the EUETSmarket[J]. Energy Policy, 2015, 82: 321-331.
|
10 |
Sun W, Zhang C C. Analysis and forecasting of the carbon price using multi—resolution singular value decomposition and extreme learning machine optimized by adaptive whale optimization algorithm[J]. Applied Energy, 2018, 231: 1354-1371.
|
11 |
Atsalakis G S. Using computational intelligence to forecast carbon prices[J]. Applied Soft Computing, 2016, 43: 107-116.
|
12 |
Fan X H, Li S S, Tian L X. Chaotic characteristic identification for carbon priceand an multi-layer perceptron network prediction model[J]. Expert Systems with Applications,2015, 42: 3945-3952.
|
13 |
Zhu B Z, Wei Y M. Carbon price forecasting with a novel hybrid ARIMA andleast squares support vector machines methodology[J].Omega,2013,41: 517-524.
|
14 |
廖诺,贺勇.基于PSO-GA-ANN的铁矿采选品位与投资策略优化[J].系统管理学报,2018, 27(3):493-499.
|
|
Liao N, He Y. Optimization of iron ore grade selection and inverstment strategies in iron mines based on PSO-GA-ANN[J]. Journal of Systems & Management, 2018, 27(3):493-499.
|
15 |
崔焕影,窦祥胜.基于EMD-GA-BP与EMD-PSO-LSSVM的中国碳市场价格预测[J].运筹与管理,2018,27(7):133-143.
|
|
Cui H Y, Dou X S. Carbon price forecasts in Chinese carbon trading market based on EMD-GA-BP and EMD-PSO-LSSVM[J]. Operations Research and Management Science, 2018,27(7):133-143.
|
16 |
Wang S X, Zhang N, Wu L, et al. Wind speed forecasting based on the hybrid ensemble empirical mode decomposition and GA-BP neural network method[J]. Renewable Energy, 2016, 94: 629-636.
|
17 |
Yang S M, Chen D J, Li S L, et al. Carbon price forecasting based on modified ensemble empirical mode decomposition and long short-term memory optimized by improved whale optimization algorithm[J]. Science of the Total Environment, 2020, 716: 137117.
|
18 |
Zhu B Z, Han D, Wang P, et al. Forecasting carbon price using empirical mode decomposition and evolutionary least squares support vector regression[J]. Applied Energy, 2017, 191:521-530.
|
19 |
Li S, Goel L, Wang P. An ensemble approach for short-term load forecasting byextreme learning machine[J]. Applied Energy, 2016, 170:22-29.
|
20 |
Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and hilbert spectrum for nonlinear and non stationary time series analysis[J]. Proceeding of the Royal Society of London SERIESA, 1998, 454: 903-995.
|
21 |
Lempel A, Ziv J.On the Complexity of Finite Sequence[J].IEEE Transactions on Information Theory,1976,22(1):75-81.
|
22 |
Campbell K. Nonlinear time series analysis[J].Technometrics,2001,43(4):491-425.
|
23 |
翁克瑞,刘淼,刘钱.TPE-XGBOOST与LassoLars组合下PM2.5浓度分解集成预测模型研究[J].系统工程理论与实践,2020,40(3):748-760.
|
|
Weng K R, Liu M, Liu Q. An integrated prediction model of PM2.5 concentration based on TPE-XGBOOST and LassoLars[J]. Systems Engineering-Theory & Practice, 2020,40(3):748-760.
|
24 |
王珏,齐琛,李明芳.基于SSA-ELM的大宗商品价格预测研究[J].系统工程理论与实践,2017,37(8):2004-2014.
|
|
Wang J, Qi C, Li M F. Prediction of commodity prices based on SSA-ELM[J]. Systems Engineering-Theory & Practice, 2017,37(8):2004-2014.
|
25 |
Wang Z X, Li Q, Pei L L. A seasonal GM(1,1) model for forecasting the electricity consumption of the primary economic sectors[J]. Energy, 2018, 154: 522-534.
|
26 |
吴利丰,刘思峰,姚立根.基于分数阶累加的离散灰色模型[J].系统工程理论与实践,2014,34(7):1822-1827.
|
|
Wu L F, Liu S F, Yao L G. Discrete grey model based on fractional order accumulate[J]. Systems Engineering- Theory & Practice, 2014,34(7):1822-1827.
|
27 |
Breiman L. Random forests[J]. Machine Learning, 2001, 45 (1): 5-32.
|
28 |
Du K, Zhao Y, Lei J. The incorrect usage of singular spectral analysis and discrete wavelet transform in hybrid models to predict hydrological time series[J]. Journal of Hydrology, 2017, 552: 44-51.
|