主管:中国科学院
主办:中国优选法统筹法与经济数学研究会
   中国科学院科技战略咨询研究院

中国管理科学 ›› 2024, Vol. 32 ›› Issue (10): 256-264.doi: 10.16381/j.cnki.issn1003-207x.2021.2559cstr: 32146.14.j.cnki.issn1003-207x.2021.2559

• • 上一篇    下一篇

CPC模式下保量合同的在线展示广告投放策略优化

代文强(),初维佳,钟婧   

  1. 电子科技大学经济与管理学院,四川 成都 611731
  • 收稿日期:2021-12-08 修回日期:2022-06-17 出版日期:2024-10-25 发布日期:2024-11-09
  • 通讯作者: 代文强 E-mail:wqdai@uestc.edu.cn
  • 基金资助:
    国家自然科学基金项目(71871045)

Online Display Advertising Optimization Based on Guaranteed Delivery Contract under CPC Model

Wenqiang Dai(),Weijia Chu,Jing Zhong   

  1. School of Management and Economics,University of Electronic Science and Technology of China,Chengdu 611731,China
  • Received:2021-12-08 Revised:2022-06-17 Online:2024-10-25 Published:2024-11-09
  • Contact: Wenqiang Dai E-mail:wqdai@uestc.edu.cn

摘要:

在线展示广告发展迅猛,按点击付费(cost per click,CPC)的保量合同是在线展示广告的一种重要合同形式。基于实际,在制定广告投放决策时曝光供应量通常是不确定的,其概率分布难以精确获知,仅知部分分布信息。本文利用分布鲁棒优化框架,构建寻求以已知信息为特征的不确定集,并在最坏情形下寻求最优广告投放策略。建立分布鲁棒机会约束模型并给出求解算法,进行了仿真分析。数值算例结果显示,设计的广告投放优化模型和相应的求解算法具有较好的表现。

关键词: 在线展示广告, 点击付费, 保量, 随机优化, 分布鲁棒

Abstract:

Online display advertising is developing rapidly, and the cost-per-click (CPC) contract is an important form of contract for online display advertising. Based on reality, the impression supply is usually uncertain when making advertising delivery decisions, and its probability distribution is difficult to accurately know, and only partial distribution information is known. Using the distributionally robust optimization framework, an uncertain set characterized by known information is constructed, and the optimal advertising strategy in the worst case. Then a distributionally robust chance-constrained formulation is established and a solution algorithm is given, and some numerical experiments are carried out. The results of the numerical experiments show that the designed advertising optimization model and the corresponding solution algorithm have good performance.

Key words: online display advertising, CPC, guaranteed delivery, stochastic optimization, distributionally robust

中图分类号: