1 |
Wei Y, Liang C, Li Y, et al. Can CBOE gold and silver implied volatility help to forecast gold futures volatility in China? Evidence based on HAR and Ridge regression models[J]. Finance Research Letters, 2020, 35: 101287.
|
2 |
Beckmann J, Berger T, Czudaj R. Gold price dynamics and the role of uncertainty[J]. Quantitative Finance, 2019, 19(4): 663-681.
|
3 |
蔡光辉, 应雪海. 基于跳跃, 好坏波动率和马尔科夫状态转换的高频波动率模型预测[J]. 系统科学与数学, 2020, 40(3): 521.
|
|
Cai G H, Ying X H. The forecasting performance of the high-frequency volatility models based on jumps, good-bad volatility and markov regime-switching[J]. Journal of Systems Science and Mathematical Sciences, 2020, 40(3): 521.
|
4 |
钟美瑞,石越,尹力博,等. 高频视角下投资者关注度对黄金期货市场的影响研究[J].系统科学与数学, 2020, 40(11): 1935-1949.
|
|
Zhong M R, Shi Y, Yin L B, et al. Research on the impact of investor attention on gold futures market from the perspective of high frequency[J]. Journal of Systems Science and Mathematical Sciences, 2020, 40(11): 1935-1949.
|
5 |
马锋,魏宇,黄登仕. 基于符号收益和跳跃变差的高频波动率模型[J].管理科学学报, 2017, 20(10): 31-43.
|
|
Ma F, Wei Y, Hang D S. Forecasting the realized volatility based on the signed return and signed jump variation[J]. Journal of Management Sciences in China, 2017, 20(10): 31-43.
|
6 |
赵华,肖佳文. 考虑微观结构噪声与测量误差的波动率预测[J].中国管理科学, 2020, 28(4): 48-60.
|
|
Zhao H, Xiao J W. Volatility forecasting in the presence of microstructure noise and measurement error[J]. Chinese Journal of Management Science, 2020, 28(4): 48-60.
|
7 |
龚旭,曹杰,文凤华,等. 基于杠杆效应和结构突变的HAR族模型及其对股市波动率的预测研究[J].系统工程理论与实践, 2020, 40(5): 1113-1133.
|
|
Gong X, Cao J, Wen F H, et al. The HAR-type models with leverage and structural breaks and their applications to the volatility forecasting of stock market[J]. Systems Engineering-Theory & Practice, 2020, 40(5): 1113-1133.
|
8 |
Andersen T G, Bollerslev T. Answering the skeptics: yes, standard volatility models do provide accurate forecasts[J]. International Economic Review, 1998, 39(4): 885-905.
|
9 |
杨科,陈浪南. 股市波动率的短期预测模型和预测精度评价[J]. 管理科学学报,2012, 15(5): 19-31.
|
|
Yang K, Chen L N. Short-term volatility forecast model and its performance evaluation[J]. Journal of Management Sciences in China,2012, 15(5): 19-31.
|
10 |
魏宇,马锋,黄登仕. 多分形波动率预测模型及其 MCS 检验[J]. 管理科学学报,2015, 18(8): 61-72.
|
|
Wei Y, Ma F, Huang D S. Multi-fractal volatility forecasting model and its MCS test[J]. Journal of Management Sciences in China, 2015, 18(8): 61-72.
|
11 |
Corsi F. A simple approximate long-memory model of realized volatility [J]. Journal of Financial Econometrics, 2009, 7(2): 174-196.
|
12 |
Wang J Q, Huang Y S, Ma F, et al. Does high-frequency crude oil futures data contain useful information for predicting volatility in the US stock market? New evidence[J]. Energy Economics, 2020, 91: 104897.
|
13 |
贺志芳,杨鑫,龚旭,等. 股指期货市场波动率的预测研究[J].系统科学与数学, 2016, 36(8): 1160-1174.
|
|
He Z F, Yang X, Gong X, et al. Predicting stock index futures market volatility[J]. Journal of Systems Science and Mathematical, 2016, 36(8): 1160-1174.
|
14 |
马锋,魏宇,黄登仕,等.基于马尔科夫状态转换和跳跃的高频波动率模型预测[J].系统工程,2016,34(1): 10-16.
|
|
Ma F, Wei Y, Huang D S, et al. The forecasting performance of the high-frequency volatility models with the markov-switching regime and jump[J]. Systems Engineering, 2016, 34(1): 10-16.
|
15 |
Patton A J, Sheppard K. Good volatility, bad volatility: signed jumps and the persistence of volatility[J]. Review of Economics and Statistics, 2015, 97(3): 683-697.
|
16 |
Mei D X, Ma F, Liao Y, et al. Geopolitical risk uncertainty and oil future volatility: evidence from MIDAS models[J]. Energy Economics, 2020, 86: 104624.
|
17 |
Ghysels E, Valkanov R. The MIDAS touch: mixed data sampling regression models[J]. Cirano Working Papers, 2004, 5(1): 512-517.
|
18 |
Ghysels E, Sinko A, Valkanov R. MIDAS regressions: further results and new directions[J]. Econometric Reviews, 2007, 26(1): 53-90.
|
19 |
Bollerslev T, Hood B, Huss J, et al. Risk everywhere: modeling and managing volatility[J]. The Review of Financial Studies, 2018, 31(7): 2729-2773.
|
20 |
Santos D G, Ziegelmann F A. Volatility forecasting via MIDAS, HAR and their combination: an empirical comparative study for IBOVESPA[J]. Journal of Forecasting, 2014, 33(4):284–299.
|
21 |
Ma F, Liao Y, Zhang Y J, et al. Harnessing jump component for crude oil volatility forecasting in the presence of extreme shocks[J]. Journal of Empirical Finance, 2019, 52:40-55.
|
22 |
Granger C W J, Ding Z X. Varieties of long memory models[J]. Journal of econometrics, 1996, 73(1): 61-77.
|
23 |
Raggi D, Bordignon S. Long memory and nonlinearities in realized volatility: a Markov switching approach[J]. Computational Statistics & Data Analysis, 2012, 56(11): 3730-3742.
|
24 |
Ma F, Liu L, Liu Z C, et al. Forecasting realized range volatility: a regime-switching approach[J]. Applied economics letters, 2015, 22(16-18): 1361-1365.
|
25 |
孙金丽,张世英.具有结构转换的GARCH模型及其在中国股市中的应用[J].系统工程, 2003(6): 86-91.
|
|
Sun J L, Zhang S Y. Regime-Swithing GARCH in China's stock market[J]. Systems Engineering, 2003(6): 86-91.
|
26 |
Hamilton J D, Susmel R. Autoregressive conditional heteroskedasticity and changes in regime[J]. Journal of Econometrics, 1994, 64(1-2): 307-333.
|
27 |
Klaassen F. Improving GARCH volatility forecasts with regime-switching GARCH[J]. Empirical Economics, 2002, 27(2): 363-394.
|
28 |
Liu L Y, Patton A J, Sheppard K. Does anything beat 5-minute RV?A comparison of realized measures across multiple asset classes[J]. Journal of Econometrics, 2015, 187(1): 293-311.
|
29 |
Lavielle M, Teyssiere G. Adaptive detection of multiple change-points in asset price volatility[M]//Teyssière G, Kirman A. Long Memory in Economics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007: 129-156.
|
30 |
Barndorff-Nielsen O E, Shephard N. Power and bipower variation with stochastic volatility and jumps[J]. Journal of Financial Econometrics, 2004, 2(1): 1-37.
|
31 |
Andersen T G, Bollerslev T, Diebold F X. Roughing it up: including jump components in the measurement, modeling, and forecasting of return volatility[J]. The Review of Economics and Statistics, 2007, 89(4): 701-720.
|
32 |
Egorov A V, Hong Y M, Li H T. Validating forecasts of the joint probability density of bond yields: can affine models beat random walk?[J]. Journal of Econometrics, 2006, 135(1-2): 255-284.
|
33 |
Patton A J. Volatility forecast comparison using imperfect volatility proxies[J]. Journal of Econometrics, 2011, 160(1): 246-256.
|
34 |
Rossi E, Fantazzini D. Long memory and periodicity in intraday volatility[J]. Journal of Financial Econometrics, 2015, 13(4): 922-961.
|
35 |
Tian S, Hamori S. Modeling interest rate volatility: a realized GARCH approach[J]. Journal of Banking & Finance, 2015, 61: 158-171.
|
36 |
Liang C, Wei Y, Zhang Y J. Is implied volatility more informative for forecasting realized volatility: an international perspective[J]. Journal of Forecasting, 2020, 39(8): 1253-1276.
|
37 |
Inoue A, Kilian L. Bagging time series models[J]. Available at SSRN, 2004,540262.
|
38 |
Inoue A, Jin L, Rossi B. Rolling window selection for out-of-sample forecasting with time-varying parameters[J]. Journal of Econometrics, 2017, 196(1): 55-67.
|
39 |
Corsi F, Reno R. Discrete-time volatility forecasting with persistent leverage effect and the link with continuous-time volatility modeling[J]. Journal of Business & Economic Statistics, 2012, 30(3): 368-380.
|
40 |
Wang J Q, Ma F, Liang C, et al. Volatility forecasting revisited using Markov-switching with time-varying probability transition[J]. International Journal of Finance & Economics, 2022, 27(1): 1387-1400.
|
41 |
Erb C B, Harvey C R. The golden dilemma[J]. Financial Analysts Journal, 2013, 69(4): 10-42.
|
42 |
Ma F, Liang C, Ma Y H, et al. Cryptocurrency volatility forecasting: a Markov regime‐switching MIDAS approach[J]. Journal of Forecasting, 2020, 39(8): 1277-1290.
|