1 |
罗逸姝.2021年A股市场多项指标刷新纪录[N].经济参考报,2022-01-04(003).DOI:10.28419/n.cnki.njjck.2022.000012 .
doi: 10.28419/n.cnki.njjck.2022.000012
|
|
Luo Y S. Many indicators of A-share market refreshed records in 2021[N]. Economic Information Daily, 2022-01-04(003).DOI:10.28419/n.cnki.njjck.2022.000012 .
doi: 10.28419/n.cnki.njjck.2022.000012
|
2 |
Geng R B, Bose I, Chen X. Prediction of financial distress: an empirical study of listed Chinese companies using data mining[J]. European Journal of Operational Research, 2015, 241(1): 236-247.
|
3 |
Sharma A, Adhikary A, Borah S B. Covid-19′s impact on supply chain decisions: strategic insights from NASDAQ 100 firms using Twitter data[J]. Journal of Business Research,2020,117:443-449.
|
4 |
Gu X, Ying S, Zhang W Q, et al. How do firms respond to covid-19? First evidence from suzhou, China[J]. Emerging Markets Finance & Trade,2020,56(10):2181-2197.
|
5 |
Altman E I. Financial ratios, discriminant analysis and the prediction of corporate bankruptcy[J]. The Journal of Finance, 1968, 23(4):589-609.
|
6 |
迟国泰,章彤,张志鹏.基于非平衡数据处理的上市公司ST预警混合模型[J].管理评论,2020,32(3):3-20.
|
|
Chi G T, Zhang T, Zhang Z P. Special treatment warning hybrid model dealing with imbalanced data of Chinese listed companies[J]. Management Review, 2020,32(3):3-20.
|
7 |
Hernandez Tinoco M, Holmes P, Wilson N, et al. Polytomous response financial distress models: the role of accounting, market and macroeconomic variables[J]. International Review of Financial Analysis, 2018, 59:276-289.
|
8 |
王昱,杨珊珊.考虑多维效率的上市公司财务困境预警研究[J].中国管理科学,2021,29(2):32-41.
|
|
Wang Y, Yang S S. Corporate financial distress prediction based on multi-dimensional efficiency indicators[J]. Chinese Journal of Management Science, 2021,29(2):32-41.
|
9 |
Shen F, Liu Y Y, Wang R, et al. A dynamic financial distress forecast model with multiple forecast results under unbalanced data environment[J]. Knowledge Based Systems,2020, 192:1-16.
|
10 |
Almamy J, Aston J, Ngwa L N. An evaluation of Altman’s Z-score using cash flow ratio to predict corporate failure amid the recent financial crisis: evidence from the UK[J]. Journal of Corporate Finance, 2016,36: 278-285.
|
11 |
Inekwe J N, Jin Y, Valenzuela M R, et al. The effects of financial distress: evidence from US GDP growth[J]. Economic Modelling, 2018, 72: 8-21.
|
12 |
Sagaert Y R, Aghezzaf E H, Kourentzes N, et al. Tactical sales forecasting using a very large set of macroeconomic indicators[J]. European Journal of Operational Research, 2018, 264(2): 558-569.
|
13 |
Hackbarth D, Miao J J, Morellec E. Capital structure, credit risk, and macroeconomic conditions[J]. Journal of Financial Economics, 2006, 82(3):519-550.
|
14 |
卢永艳.宏观经济因素对企业财务困境风险影响的实证分析[J].宏观经济研究,2013(5):53-58.
|
|
Lu Y Y. An empirical analysis of the impact of macroeconomic factors on the risk of corporate financial distress[J].Macroeconomics,2013(5):53-58.
|
15 |
Yan D W, Chi G T, Lai K K. Financial distress prediction and feature selection in multiple periods by lassoing unconstrained distributed lag non-linear models[J]. Mathematics, 2020, 8(8):1-29.
|
16 |
Tang D Y, Yan H. Market conditions, default risk and credit spreads[J]. Journal of Banking and Finance,2010,34(4): 743-753.
|
17 |
Figlewski S, Frydman H, Liang W J. Modeling the effect of macroeconomic factors on corporate default and credit rating transitions[J]. International Review of Economics & Finance, 2012, 21(1): 87-105.
|
18 |
Jiang Y, Jones S. Corporate distress prediction in China: a machine learning approach[J]. Accounting & Finance, 2018, 58(4): 1063-1109.
|
19 |
Bhattacharjee A, Han J. Financial distress of Chinese firms: microeconomic, macroeconomic and institutional influences.China Economic Review,2014,30: 244-262.
|
20 |
Ghysels E, Hill J B, Motegi K. Testing for granger causality with mixed frequency data[J]. Journal of Econometrics, 2016, 192(1): 207-230.
|
21 |
Lima L R, Meng F, Godeiro L. Quantile forecasting with mixed-frequency data[J]. International Journal of Forecasting, 2019, 36(3): 1149-1162.
|
22 |
Ghysels E, Santa-Clara P, Valkanov R. The MIDAS touch: mixed data sampling regression models[R]. Discussion Paper, UNC and UCLA, 2010.
|
23 |
刘金全,刘汉,印重.中国宏观经济混频数据模型应用——基于MIDAS模型的实证研究[J].经济科学,2010,32(5):23-34.
|
|
Liu J Q, Liu H, Yin Z. Application of Chinese macroeconomic mixing data model: an empirical study based on MIDAS model[J]. Economic Science, 2010, 32(5):23-34.
|
24 |
Xu Q F, Zhuo X X, Jiang C X, et al. Reverse restricted MIDAS model with application to US interest rate forecasts[J]. Communications in Statistics -Simulation and Computation, 2021, 50(2):462-482.
|
25 |
Audrino F, Kostrov A, Ortega J P. Predicting U.S. bank failures with MIDAS logit models[J]. Journal of Financial and Quantitative Analysis, 2019,54(6): 2575-2603.
|
26 |
Ohlson J A. Financial ratios and the probabilistic prediction of bankruptcy[J]. Journal of Accounting Research, 1980, 18(1): 109-131.
|
27 |
Li Z Y, Crook J, Andreeva G. Chinese companies distress prediction: an application of data envelopment analysis[J]. Journal of the Operational Research Society, 2014, 65(3): 466-479.
|
28 |
王小燕,张中艳,马双鸽.基于文本先验信息的贷款信用风险评估模型[J].中国管理科学,2021,29(5):34-44.
|
|
Wang X Y, Zhang Z Y, Ma S G. A loan credit risk model incorporating text prior information[J].Chinese Journal of Management Science,2021,29(5):34-44.
|
29 |
Ghysels E, Sinko A, Valkanov R. MIDAS regressions: further results and new directions[J]. Econometric Reviews, 2007, 26(1): 53-90.
|
30 |
梁墨,李鸿翔,张顺明.基于ST预测的财务困境测度与股票横截面收益[J].中国管理科学, 2023,31(2):138-149.
|
|
Liang M, Li H X, Zhang S M.A Measure for financial distress based on st predictive model and the cross-section of stock returns[J].Chinese Journal of Management Science, 2023,31(2):138-149.
|
31 |
Hosaka T. Bankruptcy prediction using imaged financial ratios and convolutional neural networks[J].Expert Systems with Applications, 2019, 117: 287-299.
|
32 |
Scalzer R S, Rodrigues A, Macedo M A, et al. Financial distress in electricity distributors from the perspective of Brazilian regulation[J]. Energy Policy, 2019, 125: 250-259.
|