1 |
Tan C X, Tan Z F, Wang G R, et al. Business model of virtual power plant considering uncertainty and different levels of market maturity[J]. Journal of Cleaner Production, 2022, 362: 131433.
|
2 |
Nolan S, O’Malley M. Challenges and barriers to demand response deployment and evaluation[J]. Applied Energy, 2015, 152: 1-10.
|
3 |
Nawaz A, Zhou M, Wu J, et al. A comprehensive review on energy management, demand response, and coordination schemes utilization in multi-microgrids network[J]. Applied Energy, 2022, 323: 119596.
|
4 |
Agrawal V V, Yücel Ş. Design of electricity demand-response programs[J]. Management Science, 2022, 68(10): 7441-7456.
|
5 |
Luo Z, Hong S H, Ding Y M. A data mining-driven incentive-based demand response scheme for a virtual power plant[J]. Applied Energy, 2019, 239: 549-559.
|
6 |
代业明, 高岩, 高红伟, 等. 基于需求响应的智能电网实时电价谈判模型[J]. 中国管理科学, 2017, 25(3): 130-136.
|
|
Dai Y M, Gao Y, Gao H W, et al. Real-time pricing contract bargaining based on demand response in smart grid[J]. Chinese Journal of Management Science, 2017, 25(3): 130-136.
|
7 |
Adelman D, Uçkun C. Dynamic electricity pricing to smart homes[J]. Operations Research, 2019, 67(6): 1520-1542.
|
8 |
Sun M, Ji J, Ampimah B C. How to implement real-time pricing in China? A solution based on power credit mechanism[J]. Applied Energy, 2018, 231: 1007-1018.
|
9 |
吴志强, 王菁祺, 高岩. 实时电价的社会福利解析[J]. 中国管理科学,2024, 32(3): 218-227.
|
|
Wu Z Q, Wang J Q, Gao Y. Social welfare analysis of real-time pricing[J]. Chinese Journal of Management Science, 2024, 32(3): 218-227.
|
10 |
朱红波, 高岩, 后勇, 等. 马尔可夫过程下多类用户智能电网实时电价[J]. 系统工程理论与实践, 2018, 38(3): 807-816.
|
|
Zhu H B, Gao Y, Hou Y, et al. Real-time pricing considering different type of users based on Markov decision processes in smart grid[J]. Systems Engineering-Theory & Practice, 2018, 38(3): 807-816.
|
11 |
Xu Z, Guo Y, Sun H B. Competitive pricing game of virtual power plants: Models, strategies, and equilibria[J]. IEEE Transactions on Smart Grid, 2022, 13(6): 4583-4595.
|
12 |
Wang Y, Ai X, Tan Z F, et al. Interactive dispatch modes and bidding strategy of multiple virtual power plants based on demand response and game theory[J]. IEEE Transactions on Smart Grid, 2016, 7(1): 510-519.
|
13 |
孙辉, 范轩轩, 胡姝博, 等. 虚拟电厂参与日前电力市场的内外协调竞标策略[J]. 电网技术, 2022, 46(4): 1248-1262.
|
|
Sun H, Fan X X, Hu S B, et al. Internal and external coordination bidding strategy of virtual power plant participating in day-ahead power market[J]. Power System Technology, 2022, 46(4): 1248-1262.
|
14 |
Di Somma M, Graditi G, Siano P. Optimal bidding strategy for a der aggregator in the day-ahead market in the presence of demand flexibility[J]. IEEE Transactions on Industrial Electronics, 2019, 66(2): 1509-1519.
|
15 |
孔令丞, 谢吉青, 朱振宁, 等. 虚拟电厂情景下电力市场交易平台定价策略研究[J]. 中国管理科学, 2022, DOI:10.16381/j.cnki.issn1003-207x.2022.1188 .
|
|
Kong L C, Xie J Q, Zhu Z N, et al. Research on pricing strategy of electricity market trading platform under virtual power plant scenario[J]. Chinese Journal of Management Science, 2022, DOI:10.16381/j.cnki.issn1003-207x.2022.1188 .
|
16 |
王瑞东, 吴杰康, 蔡志宏, 等. 含广义储能虚拟电厂电-气-热三阶段协同优化调度[J]. 电网技术, 2022, 46(5): 1857-1868.
|
|
Wang R D, Wu J K, Cai Z H, et al. Three-stage collaborative optimal scheduling of electricity-gas-heat in virtual power plant with generalized energy storage[J]. Power System Technology, 2022, 46(5): 1857-1868.
|
17 |
Liu N, Cheng M Y, Yu X H, et al. Energy-sharing provider for PV prosumer clusters: A hybrid approach using stochastic programming and stackelberg game[J]. IEEE Transactions on Industrial Electronics, 2018, 65(8): 6740-6750.
|
18 |
匡熠, 王秀丽, 王建学, 等. 基于stackelberg博弈的虚拟电厂能源共享机制[J]. 电网技术, 2020, 44(12): 4556-4564.
|
|
Kuang Y, Wang X L, Wang J X, et al. Virtual power plant energy sharing mechanism based on Stackelberg game[J]. Power System Technology, 2020, 44(12): 4556-4564.
|
19 |
Yu M M, Hong S H. A real-time demand-response algorithm for smart grids: A stackelberg game approach[J]. IEEE Transactions on Smart Grid, 2015,7(2): 879-888.
|
20 |
代业明, 孙锡连, 李陆, 等. 基于多层博弈的智能电网住宅电力实时需求响应机制[J]. 运筹与管理, 2021, 30(10): 11-17.
|
|
Dai Y M, Sun X L, Li L, et al. Residential electricity real-time demand response mechanism based on multi-level game in smart grid[J]. Operations Research and Management Science, 2021, 30(10): 11-17.
|
21 |
Erol Ö, Filik Ü B. A Stackelberg game approach for energy sharing management of a microgrid providing flexibility to entities[J]. Applied Energy, 2022, 316: 118944.
|
22 |
殷辉, 陆信辉, 周开乐. 分布式与集中式储能并存的微电网负荷优化调度[J]. 中国管理科学, 2023, 31(2): 118-128.
|
|
Yin H, Lu X H, Zhou K L. Optimal load dispatch for microgrid with distributed and centralized energy storage systems[J]. Chinese Journal of Management Science, 2023, 31(2): 118-128.
|
23 |
陈修鹏, 李庚银, 夏勇. 基于主从博弈的新型城镇配电系统产消者竞价策略[J]. 电力系统自动化, 2019, 43(14): 97-104.
|
|
Chen X P, Li G Y, Xia Y. Stackelberg game based bidding strategy for prosumers in new urban distribution system[J]. Automation of Electric Power Systems, 2019, 43(14): 97-104.
|
24 |
王程, 刘念, 成敏杨, 等. 基于Stackelberg博弈的光伏用户群优化定价模型[J]. 电力系统自动化, 2017, 41(12): 146-153.
|
|
Wang C, Liu N, Cheng M Y, et al. Stackelberg game based optimal pricing model for photovoltaic prosumer cluster[J]. Automation of Electric Power Systems, 2017, 41(12): 146-153.
|
25 |
Nash J. Non-cooperative games[M]. Cambridge: Cambridge University Press, 1989.
|
26 |
Nash J. Equilibrium points in n-person games[J]. Proceedings of the National Academy of Sciences, 1950, 36(1): 48-49.
|
27 |
王海洋, 李珂, 张承慧, 等. 基于主从博弈的社区综合能源系统分布式协同优化运行策略[J]. 中国电机工程学报, 2020, 40(17): 5435-5445.
|
|
Wang H Y, Li K, Zhang C H, et al. Distributed coordinative optimal operation of community integrated energy system based on Stackelberg game[J]. Proceedings of the CSEE, 2020, 40(17): 5435-5445.
|
28 |
He J, Li Y, Li H Q, et al. Application of game theory in integrated energy system systems: A review[J]. IEEE Access, 2020, 8: 93380-93397.
|
29 |
吴利兰, 荆朝霞, 吴青华, 等. 基于Stackelberg博弈模型的综合能源系统均衡交互策略[J]. 电力系统自动化, 2018, 42(4): 142-150+207.
|
|
Wu L L, Jing Z X, Wu Q H, et al. Equilibrium strategies for integrated energy systems based on stackelberg game model[J]. Automation of Electric Power Systems, 2018, 42(4): 142-150+207.
|
30 |
Goncalves C, Barreto R, Faria P, et al. Dataset of an energy community’s generation and consumption with appliance allocation[J]. Data in Brief, 2022, 45: 108590.
|
31 |
Faia R, Goncalves C, Gomes L, et al. Dataset of an energy community with prosumer consumption, photovoltaic generation, battery storage, and electric vehicles[J]. Data in Brief, 2023, 48: 109218.
|
32 |
Esan A B, Ehiaguina V, Awosope C, et al. Data-based investigation on the performance of an independent gas turbine for electricity generation using real power measurements and other closely related parameters[J]. Data in Brief, 2019, 26: 104444.
|
33 |
Zhou Y F, Scheller-Wolf A, Secomandi N, et al. Electricity trading and negative prices: Storage vs. disposal[J]. Management Science, 2016, 62(3): 880-898.
|