中国管理科学 ›› 2024, Vol. 32 ›› Issue (5): 47-60.doi: 10.16381/j.cnki.issn1003-207x.2021.0476cstr: 32146.14.j.cnki.issn1003-207x.2021.0476
收稿日期:
2021-03-10
修回日期:
2021-09-03
出版日期:
2024-05-25
发布日期:
2024-06-06
通讯作者:
凌爱凡
E-mail:aiffling@163.com
基金资助:
Received:
2021-03-10
Revised:
2021-09-03
Online:
2024-05-25
Published:
2024-06-06
Contact:
Aifan Ling
E-mail:aiffling@163.com
摘要:
论文从公司权益极端尾部风险的角度讨论了近年来中国公司债信用利差持续高位的原因。基于Merton 违约模型,建立了公司权益极端尾部风险与公司债信用利差的理论联系,公司权益极端尾部风险通过杠杆率渠道,对公司信用利差产生正面影响。基于中国A股市场2009-2020年的827只公司债和匹配股票样本数据,论文发现与理论预期一致,权益极端尾部风险越高的公司,其发行公司债的信用利差也越高。进一步实证发现,权益极端尾部风险对信用利差的影响,随着公司信用评级或长期负债占比升高而逐渐减弱,随着市场行情变坏而逐渐变强。机制分析发现,公司杠杆率是权益极端尾部风险对信用利差产生影响的重要渠道,因为权益极端尾部风险上升,会增加公司的负债杠杆率,从而提高公司违约风险和信用利差。论文研究是对中国公司债信用利差持续高位原因的新解释,同时有助于人们理解“信用利差之谜”产生的原因。
中图分类号:
谢林利,凌爱凡. 权益极端尾部风险、杠杆率与公司债信用利差[J]. 中国管理科学, 2024, 32(5): 47-60.
Linli Xie,Aifan Ling. Equity Extreme Tail Risks,Leverage Ratio and Credit Spreads of the Corporate Bonds in China[J]. Chinese Journal of Management Science, 2024, 32(5): 47-60.
表1
权益尾部风险对公司债券信用利差影响的单变量回归"
变量 | (I) | (II) | (III) | (IV) | (V) | (VI) | (VII) | (VIII) |
---|---|---|---|---|---|---|---|---|
0.017* (1.88) | 0.018*** (3.44) | 0.005* (1.65) | 0.004* (1.93) | 0.004*** (2.79) | 0.003*** (3.75) | |||
1.338** (1.98) | 0.432*** (3.94) | 0.155*** (2.60) | 0.077** (2.29) | 0.055*** (2.67) | 0.043*** (3.77) | |||
TVol | 0.006 (0.88) | |||||||
IdVol | 0.091** (2.38) | |||||||
FE | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
YE | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
N | 23429 | 23429 | 23429 | 23429 | 23429 | 23429 | 23429 | 23429 |
表2
权益尾部风险对公司债券信用利差影响的多因子回归"
变量 | (I) | (II) | (III) | (IV) | (V) | (VI) | (VII) | (VIII) |
---|---|---|---|---|---|---|---|---|
0.017*** | 0.021*** | 0.018*** | 0.018*** | |||||
(3.25) | (3.83) | (3.43) | (3.40) | |||||
0.424*** | 0.452*** | 0.403*** | 0.400*** | |||||
(3.75) | (4.02) | (3.75) | (3.72) | |||||
IdVol | 0.084** | 0.138*** | 0.192*** | 0.191*** | 0.077** | 0.128*** | 0.183*** | 0.182*** |
(2.15) | (3.54) | (5.04) | (5.02) | (1.99) | (3.31) | (4.84) | (4.82) | |
RET | -0.026*** | -0.014*** | -0.014*** | -0.025*** | -0.013*** | -0.013*** | ||
(-6.04) | (-3.01) | (-2.97) | (-5.86) | (-2.85) | (-2.81) | |||
LEV | 0.066*** | 0.065*** | 0.066*** | 0.065*** | ||||
(5.40) | (5.36) | (5.40) | (5.36) | |||||
LDR | -0.061*** | -0.062*** | -0.061*** | -0.062*** | ||||
(-9.93) | (-10.13) | (-9.94) | (-10.14) | |||||
ROE | -0.002*** | -0.002*** | ||||||
(-3.89) | (-3.86) | |||||||
宏观变量 | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
FE | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
YE | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Adj-R2 | 0.4866 | 0.4884 | 0.5022 | 0.5024 | 0.4869 | 0.4886 | 0.5024 | 0.5026 |
Obs | 22402 | 22402 | 22402 | 22402 | 22402 | 22402 | 22402 | 22402 |
表3
权益极端尾部风险对债券信用利差的差异性影响"
变量 | (I) | (II) | (III) | (IV) | (V) | (VI) |
---|---|---|---|---|---|---|
0.030*** | 0.006 | -0.089*** | ||||
(3.77) | (0.91) | (-8.53) | ||||
0.729*** | 0.198 | -1.367*** | ||||
(4.03) | (1.45) | (-5.80) | ||||
-0.022** | -0.599*** | |||||
(-2.44) | (-2.86) | |||||
0.024** | 0.431** | |||||
(2.24) | (1.99) | |||||
0.162*** | 2.847*** | |||||
(14.34) | (10.46) | |||||
控制变量 | Yes | Yes | Yes | Yes | Yes | Yes |
FE | Yes | Yes | Yes | Yes | Yes | Yes |
YE | Yes | Yes | No | Yes | Yes | No |
Adj-R2 | 0.5029 | 0.5027 | 0.4216 | 0.5032 | 0.5028 | 0.4135 |
Obs | 22402 | 22402 | 22402 | 22402 | 22402 | 22402 |
表4
杠杆率中介的效应检验"
变量 | CS | LEV | CS |
---|---|---|---|
0.019*** | 0.021** | 0.017*** | |
(3.60) | (2.02) | (3.38) | |
[0.419***] | [0.392*] | [0.393***] | |
(3.85) | (1.89) | (3.66) | |
LEV | 0.065*** | ||
(5.40) | |||
[0.065***] | |||
(5.40) | |||
IdVol | 0.143*** | -0.678*** | 0.188*** |
(3.78) | (-6.89) | (4.96) | |
[0.134***] | [-0.689***] | [0.179***] | |
(3.56) | (-7.10) | (4.76) | |
控制变量 | Yes | Yes | Yes |
FE | Yes | Yes | Yes |
YE | Yes | Yes | Yes |
Adj- R2 | 0.4978 | 0.9186 | 0.5025 |
[0.4980] | [0.9186] | [0.5026] | |
Obs | 22346 | 22346 | 22346 |
表6
不同估计窗口的极端尾部风险对公司债券信用利差的影响"
变量 | 5个月 | 7个月 | 9个月 | 10个月 | 5个月 | 7个月 | 9个月 | 10个月 |
---|---|---|---|---|---|---|---|---|
0.017*** | 0.012*** | 0.009** | 0.008** | |||||
(2.88) | (2.58) | (2.30) | (2.27) | |||||
0.378*** | 0.282*** | 0.219*** | 0.214*** | |||||
(3.18) | (2.93) | (2.71) | (2.80) | |||||
控制变量 | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
FE | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
YE | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Adj-R2 | 0.5023 | 0.5022 | 0.5022 | 0.5022 | 0.5024 | 0.5024 | 0.5024 | 0.5024 |
Obs | 22346 | 22346 | 22346 | 22346 | 22346 | 22346 | 22346 | 22346 |
表7
不同尾部阈值下总波动率替换异质波动率"
阈值 | |||
---|---|---|---|
0.027* | 0.015** | 0.017*** | |
(1.67) | (1.97) | (3.24) | |
[1.468*] | [0.398**] | [0.413***] | |
(1.87) | (2.31) | (3.84) | |
TVol | 0.022** | 0.023** | 0.023** |
(2.41) | (2.44) | (2.50) | |
[0.022**] | [0.022**] | [0.022**] | |
(2.42) | (2.43) | (2.48) | |
控制变量 | Yes | Yes | Yes |
FE | Yes | Yes | Yes |
YE | Yes | Yes | Yes |
Adj- R2 | 0.5008 | 0.5009 | 0.5013 |
[0.5009] | [0.5010] | [0.5016] | |
Obs | 22346 | 22346 | 22346 |
表8
不同行业下公司权益极端尾部风险对公司债信用利差的影响"
变量 | 金融、房产行业 | 非金融、房产行业 | ||||||
---|---|---|---|---|---|---|---|---|
0.026** | 0.027*** | 0.017*** | 0.016*** | |||||
(2.53) | (2.60) | (2.90) | (2.70) | |||||
0.428** | 0.463** | 0.416*** | 0.423** | |||||
(2.06) | (2.21) | (3.38) | (2.08) | |||||
TVol | 0.023 | 0.020 | 0.024** | 0.023** | ||||
(0.85) | (0.73) | (2.45) | (2.44) | |||||
IdVol | 0.155** | 0.144** | 0.195*** | 0.187** | ||||
(2.42) | (2.30) | (4.49) | (4.33) | |||||
宏观变量 | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
FE和YE | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Adj-R2 | 0.5690 | 0.5681 | 0.5686 | 0.5678 | 0.4929 | 0.4917 | 0.4931 | 0.4921 |
Obs | 5844 | 5844 | 5844 | 5844 | 16558 | 16558 | 16558 | 16558 |
表10
公司权益极端尾部风险的工具变量回归"
变量 | Panel A: | Panel B: | ||||||
---|---|---|---|---|---|---|---|---|
阶段一 | 阶段二 | 阶段一 | 阶段二 | 阶段一 | 阶段二 | 阶段一 | 阶段二 | |
0.889*** | 0.808*** | 0.087*** | 0.004*** | |||||
(35.74) | (28.41) | (7.09) | (6.51) | |||||
0.035*** | 0.155* | |||||||
(3.52) | (1.72) | |||||||
0.909*** | 3.096* | |||||||
(3.50) | (1.73) | |||||||
宏观变量 | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
FE | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
YE | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
K-P Wald F值 | 1277.1 | 807.2 | 50.3 | 42.3 | ||||
Obs | 22144 | 22144 | 22144 | 22144 | 22144 | 22144 | 22144 | 22144 |
1 | Bao J, Hou K W.Comovement of corporate bonds and equities[R]. Working Paper, Fisher College, 2013. |
2 | Merton R C.On the pricing of corporate debt: The risk structure of interest rates[J]. Journal of Finance, 1974, 29, 449-470. |
3 | Campbell J Y, Taksler G B. Equity volatility and corporate bond yields[J]. Journal of Finance, 2003,58(6):2321-2349. |
4 | Culp C L, Nozawa Y, Veronesi P. Option-based credit spreads[J]. American Economic Review, 2018, 108(2): 454-88. |
5 | Leland H E.Optimal capital structure, endogenous bankruptcy, and the term structure of credit spreads[J]. Journal of Finance, 1994, 49, 1213-1252. |
6 | Collin-Dufresne P, Goldstein R S, Martin J S.The determinants of credit spread changes[J]. Journal of Finance,2001,56(9), 2177-2207. |
7 | Bhamra H S, Lars-Alexander K, Strebulaev I A.The levered equity risk premium and credit spreads: A unified framework[J]. Review of Financial Studies,2010, 23, 645-703. |
8 | Choi J, Richardson M. The volatility of a firm's assets and the leverage effect[J]. Journal of Financial Economics, 2016,121(2): 254-277. |
9 | Nozawa Y.What drives the cross-section of credit spreads? A variance decomposition approach[J]. Journal of Finance, 2019, 72(5): 2045-2072. |
10 | Benmelech E, Kumar N, Rajan R G.Secured credit spreads[R]. Working Papers, University of Chicago,2020. |
11 | Du D, Elkamhi R, Ericsson J.Time-varying asset volatility and the credit spread puzzle[J]. Journal of Finance, 2019,74(4): 1841-1885. |
12 | Bai J, Goldstein R S, Yang F. Is the credit spread puzzle a myth?[J]. Journal of Financial Economics, 2020,137: 297-319. |
13 | Bollerlev T. Tails, fears, and risk premia[J].Journal of Finance,2011,66(6): 2165-2211. |
14 | Kelly B, Jiang H.Tail risk and asset prices[J]. Review of Financial Studies, 2014,27(10): 2841-2871. |
15 | 杨子晖, 陈雨恬, 陈里璇.极端金融风险的有效测度与非线性传染[J].经济研究,2019(5):63-80. |
Yang Z H, Chen Y T, Chen L X.Effective measurement and nonlinear contagion of extreme financial risk[J].Economic Research Journal,2019(5):63-80. | |
16 | Bali T G, Cakici N.Idiosyncratic volatility and the crosssection of expected returns?[J].Journal of Fina-ncial and Quantitative Analysis, 2008,43(1),29-58. |
17 | Bali T G, Cakici N, Whitelaw R F. Hybrid tail risk and expected stock returns: When does the tail wag the dog?[J]. Review of Asset Pricing Studies, 2014,4(2): 206-246. |
18 | 陈国进, 许秀, 赵向琴.罕见灾难风险和股市收益—基于我国个股横截面尾部风险的实证分析[J].系统工程理论与实践,2015,35(9):2186-2199. |
Chen G J, Xu X, Zhao X Q. Rare disaster risk and asset return: Evidence from tail risk in Chinese stock market[J]. Systems Engineering—Theory & Practice, 2015, 35(9):2186-2199. | |
19 | 凌爱凡, 谢林利. 特异性尾部风险、混合尾部风险与资产定价—来自我国A股市场的证据[J].管理科学学报,2019(8):71-87. |
Ling A F, Xie L L. Idiosyncratic tail risk, hybrid tail risk and asset pricing: Evidence from China’s A——share market[J].Journal of Management Sciences in China, 2019(8):71-87. | |
20 | Atilgan Y, Bali T G, Demirtas K O, et al.Left-tail momentum: Underreaction to bad news, costly arbitrage and equity returns[J]. Journal of Financial Economics, 2020,135(3):725-753. |
21 | 张岳松, 宋丹丹, 陈彪.基于可协商的可转换债券和企业资本结构[J].中国管理科学, 2020(9):1-11. |
Zhang Y S, Song D D, Cen B. Convertible debt and capital structure with debt renegotiation covenant[J].Chinese Journal of Management Science,2020(9):1-11. | |
22 | 王雄元,高开娟.客户集中度与公司债二级市场信用利差[J].金融研究, 2017(1):130-144. |
Wang X Y, Gao K J. Customer-based concentration and bond yield spread in secondary market[J].Journal of Financial Research.2017(1):130-144. | |
23 | 李永, 王亚琳, 邓伟伟.投资者情绪、异质性与公司债券信用利差[J].财贸研究, 2018(3):100-110. |
Li Y, Wang Y L, Deng W W. Investor sent-iment, heterogeneity and the credit spread of Chinese corporate bonds[J]. Finance and Trade Research, 2018(3):100-110. | |
24 | 杨国超,盘宇章.信任被定价了吗?——来自债券市场的证据[J].金融研究,2019(1):35-53. |
Yang G C, Pan Y Z. Is trust priced? Evidence from the bond market[J].Journal of Financial Research.2019(1):35-53. | |
25 | 何朝林,涂蓓,王鹏. 动态均值-方差资产组合的有效性:时变风险容忍度视角[J].中国管理科学,2021(1):1-11. |
He C L, Tu B, Wang P. The effectiveness of dynamic mean-variance portfolio:An aspect of time-varying risk tolerance[J]. Chinese Journal of Management Science,2021(1):1-11. | |
26 | 史永东, 郑世杰, 袁绍锋.中债估值识别了债券信用风险吗?基于跳跃视角的实征分析[J].金融研究,2021(7): 115-133. |
Shi Y D, Zheng S J, Yuan S F. Does China bond valuation recognize bond credit risk?An empirical analysis based on Yield-jump perspective[J]. Journal of Financial Research,2021(7): 115-133. | |
27 | Amstad M, He Z G. Chinese bond market and interbank market[R]. NBER Working Papers, Stanford University, 2022. |
28 | Hull J C. Options, Futures and other Derivatives(6th Edition)[M]. Tenth Edition. New York: Pearson Education, 2018. |
29 | Hu J, Li X, Duncan K, et al. Corporate relationship spending and stock price crash risk: Evidence from China's anti-corruption campaign[J]. Journal of Banking & Finance, 2020:105758. |
30 | 罗嘉雯,陈浪南.多国股票市场的高频波动相关性研究[J].中国管理科学, 2018,26(2):116-125. |
Luo J W, Chen L N.The volatility comove-mentof various stock markets based on high-frequency data[J].Chinese Journal of Management Science, 2018,26(2):116-125. | |
31 | 许晓芳, 周茜, 陆正飞.过度负债企业去杠杆:程度、持续性及政策效应——来自中国上市公司的证据[J].经济研究,2020(8):89-104. |
Xu X F, Zhou X, Lu Z F.Deleveraging in over-indebted firms:Degree,sustainability and policy effect[J].Economic Research Journal, 2020(8):89-104. |
[1] | 周坤,高晓辉,李廉水. 基于EMD-XGB-ELM和FSGM双元处理的碳排放交易价格集成预测[J]. 中国管理科学, 2024, 32(10): 325-334. |
[2] | 叶志强,张顺明,沈雪晨,郑洁菲. 我国上市公司定向增发的收益波动率择时效应研究[J]. 中国管理科学, 2024, 32(10): 30-40. |
[3] | 何枫,杜寒玉,郝晶. 中国股市存在互联网媒体关注溢价吗?[J]. 中国管理科学, 2024, 32(10): 20-29. |
[4] | 石晓军,邢佳騉. 信用保险下零售商主导型供应链融资模式研究:基于报童模型的分析[J]. 中国管理科学, 2024, 32(8): 194-203. |
[5] | 罗长青,刘澜,朱慧明,张敏. 基于多尺度信息份额模型的原油市场定价能力动态演变研究[J]. 中国管理科学, 2024, 32(6): 1-12. |
[6] | 何汉,李思呈. 基于有向复杂网络的担保圈违约风险传染建模研究[J]. 中国管理科学, 2024, 32(6): 22-33. |
[7] | 雷欣南,林乐凡,肖斌卿,俞红海. 小微企业违约特征再探索:基于SHAP解释方法的机器学习模型[J]. 中国管理科学, 2024, 32(5): 1-12. |
[8] | 刘澜飚,郭亮. 中国A股市场下行风险研究[J]. 中国管理科学, 2024, 32(5): 61-72. |
[9] | 邹美凤,张信东,刘维奇. 供应商集中度与企业金融化:“风险效应”还是“协同效应”?[J]. 中国管理科学, 2024, 32(3): 116-124. |
[10] | 傅强,石泽龙. 系统性金融风险的联合网络关联度测量及频率研究[J]. 中国管理科学, 2024, 32(2): 1-10. |
[11] | 胡俊,李强,戴嘉诚,曾勇. 基于文本分析的商业银行金融科技测度及赋能效果检验[J]. 中国管理科学, 2024, 32(1): 31-41. |
[12] | 戚逸康. 非金融企业部门债务与资源配置优化[J]. 中国管理科学, 2024, 32(1): 65-74. |
[13] | 沈德华,李悦. 商品期货能够提高传统投资组合的绩效吗?来自中国市场的经验证据[J]. 中国管理科学, 2023, 31(12): 34-45. |
[14] | 张永冀,李天雄,苏治,黄琼. 基金规模、投资者关注与基金业绩持续性[J]. 中国管理科学, 2023, 31(12): 57-68. |
[15] | 杜江泽,陈希卓,余乐安. IT背景高管能促进金融科技创新吗?[J]. 中国管理科学, 2023, 31(12): 69-78. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|