中国管理科学 ›› 2021, Vol. 29 ›› Issue (11): 23-32.doi: 10.16381/j.cnki.issn1003-207x.2020.0076
李爱忠1
收稿日期:
2020-01-15
修回日期:
2020-05-13
出版日期:
2021-11-20
发布日期:
2021-11-22
通讯作者:
李爱忠(1972-),男(汉族),山西人,山西财经大学财政与公共经济学院,副教授,博士,硕士生导师,研究方向:数量经济、投资组合分析、金融工程与风险管理,Email:lazshp@sina.com.
E-mail:lazshp@sina.com
基金资助:
LI Ai-zhong1, REN Ruo-en2, LI Ze-kai3, YU Le-an4
Received:
2020-01-15
Revised:
2020-05-13
Online:
2021-11-20
Published:
2021-11-22
Contact:
李爱忠
E-mail:lazshp@sina.com
摘要: 面对金融市场的大量不确定性因素,如何合理选择有效的定价因子并构建科学的资产定价体系,一直是金融理论研究的核心问题之一。本文利用图嵌入的方法,基于稀疏表示和低秩表示策略,深度挖掘潜含在数据集中的内在结构,构建了能够同时揭示数据局部结构信息和全局结构信息的集成学习策略,以实现不同维度的多源数据融合。从CAPM和APT理论出发,通过集成预测的方法构建量化多因子资产选择模型,代表性地选择了卷积神经网络、梯度提升决策树、时间序列及支持向量机等模型进行单一预测,并通过稀疏低秩的图近似最小二乘回归集成策略进行优化。实证结果表明基于集成预测的稀疏低秩策略其资产选择能力更强,超额收益率更高。采用机器学习的非线性预测方法更有利于揭示金融系统的复杂特性。实证结论对投资组合管理具有重要指导意义。
中图分类号:
李爱忠. 图嵌入下稀疏低秩集成预测的多因子资产选择策略[J]. 中国管理科学, 2021, 29(11): 23-32.
LI Ai-zhong, REN Ruo-en, LI Ze-kai, YU Le-an. Multi-factor Asset Selection Strategy Based on Sparse Low-rank Ensemble Prediction under Graph Embedding[J]. Chinese Journal of Management Science, 2021, 29(11): 23-32.
[1] Markowitz H. Portfolio selection[J]. Journal of Finance,1952,7(1):77-91 [2] Sharpe W F. A linear programming algorithm for mutual fund portfolio se1ection[J]. Management Science,1967,3(5):499-510 [3] Cox J C, Ross S A. A theory of the term structure of interest rates[J]. Econometrica, 1985, 53(2):385-407. [4] Wedding II D K, Cios K J. Time series forecasting by combining RBF networks, certainty factors, and the Box-Jenkins model[J]. Neurocomputing, 1996, 10(2):149-168. [5] Gencay R. Non-linear prediction of security returns with moving average rules[J]. Journal of Forecasting, 1996, 15(3): 165-174. [6] Tseng F M, Yu H C, Tzeng G H. Combining neural network model with seasonal time series ARIMA model[J]. Technological Forecasting & Social Change, 2002, 69(1):71-87. [7] Voort M V D, Dougherty M, Watson S. Combining Kohonen maps with Arima time series models to forecast traffic flow[J]. Transportation Research Part C Emerging Technologies, 1996, 4(5):307-318. [8] Zhang G P. Time series forecasting using a hybrid ARIMA and neural network model[J]. Neurocomputing, 2003, 50(11):159-175. [9] Pelikan E, Groot C D, Wurtz D. Power consumption in West-Bohemia: Improved forecasts with decorrelating connectionist networks[J]. Neural Network World, 1992, 2(6):701-712. [10] 于志军, 杨善林, 章政,等. 基于误差校正的灰色神经网络股票收益率预测[J]. 中国管理科学, 2015, 23(12):20-26.Yu Zhijun, Yang Shanlin, Zhang Zheng, et al. Stock returns prediction based on error-correction grey neural network[J]. Chinese Journal of Management Science, 2015, 23(12): 20-26. [11] 陈艳, 王宣承. 基于变量选择和遗传网络规划的期货高频交易策略研究[J]. 中国管理科学, 2015, 23(10):47-56.Chen Yan, Wang Xuncheng. A Study on high-frequency futures trading strategy based on variable selection and genetic network programming[J]. Chinese Journal of Management Science, 2015, 23(10): 47-56. [12] 欧阳红兵,黄亢,闫洪举. 基于LSTM神经网络的金融时间序列预测[J].中国管理科学, 2020, 28(4):27-35.OuYang Hongbing, Huang Kang, Yan Hongju. Prediction of financial time series based on LSTM neural network[J]. Chinese Journal of Management Science, 2020, 28(4): 27-35. [13] Gocken M , Ozcalici M , Boru A , et al. Integrating metaheuristics and Artificial Neural Networks for improved stock price prediction[J]. Expert Systems with Applications, 2016, 44(2):320-331. [14] Fanelli G, Dantone M, Gall J, et al. Random forests for real Time 3D face analysis[J]. International Journal of Computer Vision, 2013, 101(3):437-458. [15] Bowman N D, Pietschmann D, Liebold B. The golden (hands) rule: Exploring user experiences with gamepad and natural-user interfaces in popular video games[J]. Journal of Gaming & Virtual Worlds, 2017, 9(1):71-85. [16] Liao Shengcai, Jain A K, Li S Z. A fast and accurate unconstrained face detector[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2016,38(2):211-233. [17] 汪寿阳, 余乐安, 黎建强. TEI@I方法论及其在外汇汇率预测中的应用[J]. 管理学报, 2007, 4(1):21-27.Wang Shouyang, Yu Lean, LaiKK. TEI@I methodology and its application to exchange rates prediction[J].Chinese Journal of Management,2007, 4(1):21-27. [18] Wang Shouyang, Yu Lean, Lai K K. Crude oil price forecasting with TEI@I methodology[J].International Journal of Systems Science and Complexity,2005, 18(2):145-166. [19] Wang Shouyang, Yu Lean, Lai K K. A novel hybrid AI systemframework for crude oil price forecasting[J].Lecture Notes in Artificial Intelligence(LNAI),2005,3327:233-242. [20] Wang Shouyang.TEI@I: A new methodology for studying complex systems[Z].The International Workshop on Complexity Science,Tsukuba, Japan, 2004. [21] Rumelhart D, Hinton G, Williams R. Learning Internal representations by error propagation, parallel distributed processing[J]. explorations in the microstructure of cognition, 1986,1:318-363. [22] Gardner M W, Dorling S R. Artificial neural network (multilayer perceptron)—A review of applications in atmospheric sciences[J]. atmospheric environment, 1998, 32(14):2627-2636. [23] Rafiq M Y, Bugmann G, Easterbrook D J. Neural network design for engineering applications[J]. Computers & Structures, 2001, 79(17):1541-1552. [24] Krycha K A, Wagner U. Applications of artificial neural networks in management science: A survey[J]. Journal of Retailing & Consumer Services, 1999, 6(4):185-203. [25] Faure A, York P, Rowe R C. Process control and scale-up of pharmaceutical wet granulation processes: A review[J]. European Journal of Pharmaceutics and Biopharmaceutics, 2001, 52(3):269-277. [26] Hunt K J, Sbarbaro D, Bikowski R, et al. Neural networks for control systems—A survey[J]. Automatica, 1992, 28(6):1083-1112. [27] Hochreiter S, Schmidhuber J. Long Short-term memory[J]. Neural computation, 1997, 9(8):1735-1780. [28] Zia T , Zahid U . Long short-term memory recurrent neural network architectures for Urdu acoustic modeling[J].International Journal of Speech Technology, 2019, 22(1):21-30. [29] Chen Tianqi, Guestrin C. XGBoost: A scalable tree boosting system[C]// Acm Sigkdd International Conference on Knowledge Discovery & Data Mining. ACM, 2016. [30] Mallat S G, Zhang Zhifeng. Matching pursuit with time-frequency dictionaries[J]. IEEE Transactions on Signal Processing, 1993, 41(2): 3397-3415. [31] Willshaw D J, Buneman O P, Longuet-Higgins H C. Non-holographic associative memory[J]. Nature, 1969, 222(5197): 960-962. |
[1] | 郭冉冉,叶五一,刘小泉,缪柏其. 商品期货投资组合与市场收益的尾部相依研究[J]. 中国管理科学, 2024, 32(10): 11-19. |
[2] | 韩鑫韬,张晓敏,刘星. 宏观审慎管理配合下的最优货币政策选择[J]. 中国管理科学, 2024, 32(10): 1-10. |
[3] | 成思聪,王天一. 引入隔夜信息的期权定价模型研究[J]. 中国管理科学, 2024, 32(9): 1-10. |
[4] | 吴鑫育,谢海滨,马超群. 经济政策不确定性与人民币汇率波动率[J]. 中国管理科学, 2024, 32(8): 1-14. |
[5] | 谢楠,何海涛,周艳菊,王宗润. 乡村振兴背景下基于中央政府项目补贴分析的供应链金融决策研究[J]. 中国管理科学, 2024, 32(8): 214-229. |
[6] | 于孝建,刘国鹏,刘建林,肖炜麟. 基于LSTM网络和文本情感分析的股票指数预测[J]. 中国管理科学, 2024, 32(8): 25-35. |
[7] | 倪宣明,郑田田,赵慧敏,武康平. 基于最优异质收益率因子的资产定价研究[J]. 中国管理科学, 2024, 32(8): 50-60. |
[8] | 于文华,任向阳,杨坤,魏宇. 传染病不确定性对大宗商品期货价格波动的非对称影响研究[J]. 中国管理科学, 2024, 32(5): 254-264. |
[9] | 蔡毅,唐振鹏,吴俊传,杜晓旭,陈凯杰. 基于灰狼优化的混频支持向量机在股指预测与投资决策中的应用研究[J]. 中国管理科学, 2024, 32(5): 73-80. |
[10] | 李仲飞,周骐. 一个基于BL模型和复杂网络的行业配置模型[J]. 中国管理科学, 2024, 32(4): 1-13. |
[11] | 张雪彤,张卫国,王超. 发达市场与新兴市场的尾部风险[J]. 中国管理科学, 2024, 32(4): 14-25. |
[12] | 尹海员,寇文娟. 基于朴素贝叶斯法的投资者情绪度量及其对股票特质风险的影响[J]. 中国管理科学, 2024, 32(4): 38-47. |
[13] | 王晓燕,杨胜刚,张科坤. 终极所有权结构与企业委托贷款行为[J]. 中国管理科学, 2024, 32(4): 48-57. |
[14] | 李爱忠,任若恩,董纪昌. 图网络风险感知与稀疏低秩的组合管理策略[J]. 中国管理科学, 2024, 32(4): 58-65. |
[15] | 吴鑫育,姜晓晴,李心丹,马超群. 基于已实现EGARCH-FHS模型的上证50ETF期权定价研究[J]. 中国管理科学, 2024, 32(3): 105-115. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|