Chinese Journal of Management Science ›› 2026, Vol. 34 ›› Issue (2): 176-184.doi: 10.16381/j.cnki.issn1003-207x.2023.1508
Previous Articles Next Articles
Received:2023-09-13
Revised:2024-02-09
Online:2026-02-25
Published:2026-02-04
Contact:
Jujie Wang
E-mail:jujiewang@126.com
CLC Number:
Ling Liu,Jujie Wang. Dual-meta Pool Method for Wind Power Ramp Event Forecasting[J]. Chinese Journal of Management Science, 2026, 34(2): 176-184.
"
| 模型 | SALTCRK1 | DUNDWF3 | MEWF1 | SALTCRK1 | DUNDWF3 | MEWF1 | SALTCRK1 | DUNDWF3 | MEWF1 |
|---|---|---|---|---|---|---|---|---|---|
| (P) | (P) | (P) | (RC) | (RC) | (RC) | (CSI) | (CSI) | (CSI) | |
| M1 | 0.1945 | 0.1157 | 0.1371 | 0.0773 | 0.2243 | 0.2102 | 0.0585 | 0.0826 | 0.0905 |
| M2 | 0.2286 | 0.0541 | 0.1793 | 0.0339 | 0.0634 | 0.0170 | 0.0304 | 0.0301 | 0.0158 |
| M3 | 0.1461 | 0.0668 | 0.2879 | 0.0324 | 0.0953 | 0.0098 | 0.0272 | 0.0409 | 0.0096 |
| M4 | 0.1756 | 0.1106 | 0.1903 | 0.0461 | 0.1608 | 0.1618 | 0.0379 | 0.0701 | 0.0958 |
| M5 | 0.1870 | 0.1304 | 0.2508 | 0.0592 | 0.1622 | 0.1216 | 0.0487 | 0.0779 | 0.0892 |
| Mp | 0.4061 | 0.4392 | 0.4918 | 0.4390 | 0.4677 | 0.4312 | 0.2674 | 0.2928 | 0.2983 |
"
| 模型 | SALTCRK1 | DUNDWF3 | MEWF1 | SALTCRK1 | DUNDWF3 | MEWF1 | SALTCRK1 | DUNDWF3 | MEWF1 |
|---|---|---|---|---|---|---|---|---|---|
| (MAE) | (MAE) | (MAE) | (RMSE) | (RMSE) | (RMSE) | (MedAE) | (MedAE) | (MedAE) | |
| M1 | 15.166 | 33.048 | 34.620 | 17.705 | 37.273 | 40.346 | 14.462 | 32.040 | 30.561 |
| M2 | 15.128 | 32.892 | 33.206 | 17.761 | 37.155 | 38.505 | 14.448 | 32.282 | 30.364 |
| M3 | 15.201 | 33.015 | 33.186 | 17.880 | 37.350 | 38.517 | 14.473 | 32.183 | 30.614 |
| M4 | 15.184 | 33.294 | 34.251 | 17.733 | 37.649 | 40.628 | 14.508 | 32.374 | 30.169 |
| M5 | 15.093 | 33.312 | 33.834 | 17.523 | 37.698 | 39.327 | 14.480 | 32.603 | 30.367 |
| Mp | 11.555 | 23.861 | 24.558 | 14.817 | 30.456 | 32.072 | 10.439 | 21.863 | 21.568 |
| [1] | 周伟杰, 姜慧敏, 成雨珂, 等. 基于可重复性分数阶灰色时间幂模型的中国水电消费预测研究[J]. 中国管理科学, 2023, 31(5): 279-286. |
| Zhou W J, Jiang H M, Cheng Y K, et al. Forecasting Chinese hydropower consumption forecasting by using the repeatability fractional grey time power model[J]. Chinese Journal of Management Science, 2023, 31(5): 279-286. | |
| [2] | 陆信辉, 周开乐, 杨善林. 能源互联网环境下基于分布鲁棒优化的能量枢纽负荷优化调度[J]. 系统工程理论与实践, 2021, 41(11): 2850-2864. |
| Lu X H, Zhou K L, Yang S L. Optimal load dispatch of energy hub based on distributionally robust optimization approach in energy internet environment[J]. Systems Engineering —Theory & Practice, 2021, 41(11): 2850-2864. | |
| [3] | Das S, Singh B. Mitigating impact of high power ramp rates in utility grid integrated wind–solar system using an RLMAT adaptive control strategy[J]. IEEE Transactions on Energy Conversion, 2023, 38(1): 343-354. |
| [4] | 韩学山, 王心仪, 杨明, 等. 新能源爬坡事件综述及展望[J]. 山东大学学报(工学版), 2021(5): 53-62+75. |
| Han X S, Wang X Y, Yang M, et al. Review and prospect of renewable energy ramp events[J]. Journal of Shandong University (Engineering Science), 2021(5): 53-62+75. | |
| [5] | Fujimoto Y, Takahashi Y, Hayashi Y. Alerting to rare large-scale ramp events in wind power generation[J]. IEEE Transactions on Sustainable Energy, 2019, 10(1): 55-65. |
| [6] | 赵越, 徐博涵, 王聪, 等. 基于风电场功率预测的数据价值研究[J]. 工程管理科技前沿, 2023, 42(2): 34-42. |
| Zhao Y, Xu B H, Wang C, et al. Research on data value based on wind farm power prediction[J]. Frontiers of Science & Technology of Engineering Management, 2023, 42(2): 34-42. | |
| [7] | Dalton A, Bekker B, Koivisto M J. Simulation and detection of wind power ramps and identification of their causative atmospheric circulation patterns[J]. Electric Power Systems Research, 2021, 192: 106936. |
| [8] | Dorado-Moreno M, Navarin N, Gutiérrez P A, et al. Multi-task learning for the prediction of wind power ramp events with deep neural networks[J]. Neural Networks, 2020, 123: 401-411. |
| [9] | Cui M, Feng C, Wang Z, et al. Statistical representation of wind power ramps using a generalized Gaussian mixture model[J]. IEEE Transactions on Sustainable Energy, 2018, 9(1): 261-272. |
| [10] | Drew D R, Cannon D J, Barlow J F, et al. The importance of forecasting regional wind power ramping: A case study for the UK[J]. Renewable Energy, 2017, 114: 1201-1208. |
| [11] | Zucatelli P J, Nascimento E G S, Santos A Á B, et al. An investigation on deep learning and wavelet transform to nowcast wind power and wind power ramp: A case study in Brazil and Uruguay[J]. Energy, 2021, 230: 120842. |
| [12] | Cui Y, Chen Z, He Y, et al. An algorithm for forecasting day-ahead wind power via novel long short-term memory and wind power ramp events[J]. Energy, 2023, 263: 125888. |
| [13] | Cui Y, He Y, Xiong X, et al. Algorithm for identifying wind power ramp events via novel improved dynamic swinging door[J]. Renewable Energy, 2021, 171: 542-556. |
| [14] | Cui M, Zhang J, Wang Q, et al. A data-driven methodology for probabilistic wind power ramp forecasting[J]. IEEE Transactions on Smart Grid, 2019, 10(2): 1326-1338. |
| [15] | Hu J, Zhang L, Tang J, et al. A novel transformer ordinal regression network with label diversity for wind power ramp events forecasting[J]. Energy, 2023, 280: 128075. |
| [16] | He Y, Zhu C, An X. A trend-based method for the prediction of offshore wind power ramp[J]. Renewable Energy, 2023, 209: 248-261. |
| [17] | 李霞, 李守伟. 基于EMD与DVG的非线性时间序列预测模型及其应用研究[J]. 中国管理科学, 2022, 30(9): 275-286. |
| Li X, Li S W. Non-linear time series prediction model based on EMD and DVG and its application[J]. Chinese Journal of Management Science, 2022, 30(9): 275-286. | |
| [18] | Gallego-Castillo C, Cuerva-Tejero A, Lopez-Garcia O. A review on the recent history of wind power ramp forecasting[J]. Renewable and Sustainable Energy Reviews, 2015, 52: 1148-1157. |
| [19] | 徐思卿, 柯德平, 徐箭. 基于YOLOv5s的风电功率爬坡事件识别[J]. 武汉大学学报(工学版), 2022, 55(9): 910-918. |
| Xu S Q, Ke D P, Xu J. Wind power ramp event detection based on YOLOv5s[J]. Engineering Journal of Wuhan University, 2022, 55(9): 910-918. | |
| [20] | Cui M, Krishnan V, Hodge B M, et al. A copula-based conditional probabilistic forecast model for wind power ramps[J]. IEEE Transactions on Smart Grid, 2019, 10(4): 3870-3882. |
| [21] | Liu L, Wang J. Super multi-step wind speed forecasting system with training set extension and horizontal–vertical integration neural network[J]. Applied Energy, 2021, 292: 116908. |
| [22] | Liu L, Wang J, Li J, et al. Dual-meta pool method for wind farm power forecasting with small sample data[J]. Energy, 2023, 267: 126504. |
| [23] | Shi X, Chen Z, Wang H, et al. Convolutional LSTM network: A machine learning approach for precipitation nowcasting [C]// Proceedings of the 29th International Conference on Neural Information Processing Systems, Montreal Canada, December 7-12 ,MIT Press, 2015: 802-810. |
| [24] | Kim Y, Jernite Y, Sontag D, et al. Character-aware neural language models[C]//Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence,Phoenix, Arizona, February 12-17, ACM, 2016: 2741-2749. |
| [25] | Li G, Zhang M, Li J, et al. Efficient densely connected convolutional neural networks[J]. Pattern Recognition, 2021, 109: 107610. |
| [26] | Ouyang T, Zha X, Qin L, et al. Prediction of wind power ramp events based on residual correction[J]. Renewable Energy, 2019, 136: 781-792. |
| [27] | 童林, 官铮, 王立威, 等. 基于时序分解与误差修正的新能源爬坡事件预测[J]. 浙江大学学报(工学版), 2022, 56(2): 338-346. |
| Tong L, Guan Z, Wang L W, et al. New energy ramp event prediction based on time series decomposition and error correction[J]. Journal of Zhejiang University (Engineering Science), 2022, 56(2): 338-346. |
| [1] | Gaomin Zhang, Teng Wang, Yuanyu Lou, Zhongcheng Guan, Haijun Zheng, Qiang Li, Jiaqian Wu. Research on China's Provincial Carbon Emission Peak Path Based on a LSTM Neural Network Approach [J]. Chinese Journal of Management Science, 2025, 33(3): 339-350. |
| [2] | Yidong Chai, Haoxin Liu, Yuanchun Jiang, Yezheng Liu. Graph Neural Network Recommendation System Adversarial Attack Method Based on Importance Maximization and Community Partition [J]. Chinese Journal of Management Science, 2025, 33(2): 95-104. |
| [3] | Yuxuan Kou, Sihan Li, Dunhu Liu, Ruoyi Li, Jing Huang, Jin Xiao. A DKELM-based Selective Deep-ensemble Model for Container Throughput Forecasting [J]. Chinese Journal of Management Science, 2025, 33(10): 24-35. |
| [4] | Xiaojian Yu,Guopeng Liu,Jianlin Liu,Weilin Xiao. Stock Index Prediction Based on LSTM Network and Text Sentiment Analysis [J]. Chinese Journal of Management Science, 2024, 32(8): 25-35. |
| [5] | Shi-feng LIU,Lai-song KANG,Da-qing GONG. An Event POI Recommendation System for Groups in EBSN [J]. Chinese Journal of Management Science, 2023, 31(12): 301-310. |
| [6] | YANG Lian, SHI Bao-feng. Credit Risk Evaluation Model and Empirical Research Based on Focal Loss Modified Cross-Entropy Loss Function [J]. Chinese Journal of Management Science, 2022, 30(5): 65-75. |
| [7] | ZHANG Jing, ZHOU Yi-xin, HU Han, BIAN Yi-wen. Identification of Usefulness for Online Reviews Based on Knowledge Adoption Model and Multilayer Perceptron Neural Network [J]. Chinese Journal of Management Science, 2022, 30(4): 264-274. |
| [8] | ZHAO Yang, HAO Jun, LI Jian-ping. A Trimmed Average Based Neural Network Ensemble Approach for Time Series Forecasting [J]. Chinese Journal of Management Science, 2022, 30(3): 211-220. |
| [9] | WANG Yu, YANG Shan-shan. Corporate Financial Distress Prediction Based on Multi-Dimensional Efficiency Indicators [J]. Chinese Journal of Management Science, 2021, 29(2): 32-41. |
| [10] | HU Chunhua, DENG Ao, TONG Xiaoqin, MIAO He, WANG Zongrun. A Graph Neural Network Recommendation Study Combining Trust and Reputation in Social E-commerce [J]. Chinese Journal of Management Science, 2021, 29(10): 202-212. |
| [11] | ZHANG Ding-hua, LI Wei-jun, LI Cheng, SHEN Shi-fei. The Researchon the Analysis and Prediction of Mass Incidentsin Multi-dimensional Scenario Space Based on Deep Learning [J]. Chinese Journal of Management Science, 2020, 28(8): 172-180. |
| [12] | LU Xiao-qin, FENG Ling, DING Jian-ping. Testing the Nonlinear Cointegration Relation of Monetary Models of Exchange Rate Determination ——An Analysis Based on the Deep GRU Neural Network [J]. Chinese Journal of Management Science, 2020, 28(5): 1-13. |
| [13] | OUYANG Hong-bing, HUANG Kang, YAN Hong-ju. Prediction of Financial Time Series Based on LSTM Neural Network [J]. Chinese Journal of Management Science, 2020, 28(4): 27-35. |
| [14] | YANG Chang-hui, SHAO Zhen, LIU Chen, FU Chao. A Hybrid Modeling Framework and Its Application for Exchange Traded Fund Options Pricing [J]. Chinese Journal of Management Science, 2020, 28(12): 44-53. |
| [15] | CAI Shu-qin, WANG Yang, WANG Yi-xing, QIN Zhi-yong, DOU Cong-ying. Research on the Expert Identification Method of Online Negative Word-of-mouth Handling [J]. Chinese Journal of Management Science, 2019, 27(3): 189-197. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
||
