 
  
	Chinese Journal of Management Science ›› 2025, Vol. 33 ›› Issue (10): 24-35.doi: 10.16381/j.cnki.issn1003-207x.2023.0902
Previous Articles Next Articles
					
													Yuxuan Kou1, Sihan Li2, Dunhu Liu3, Ruoyi Li4, Jing Huang5, Jin Xiao2,6( )
)
												  
						
						
						
					
				
Received:2023-06-01
															
							
																	Revised:2024-03-26
															
							
															
							
																	Online:2025-10-25
															
							
																	Published:2025-10-24
															
						Contact:
								Jin Xiao   
																	E-mail:xjxiaojin@126.com
																					CLC Number:
Yuxuan Kou,Sihan Li,Dunhu Liu, et al. A DKELM-based Selective Deep-ensemble Model for Container Throughput Forecasting[J]. Chinese Journal of Management Science, 2025, 33(10): 24-35.
 
													
													
"
| 港口 | 预测模型 | RMSE | MASE | MAPE | Dstat | 
|---|---|---|---|---|---|
| 上 海 港 | OVMD-DKELM-L | 3.7214 | 0.0099 | 0.1970 | 0.8291 | 
| OVMD-DKELM-G | 3.7457 | 0.0096 | 0.1930 | 0.7826 | |
| OVMD-DKELM-W | 4.2422 | 0.0105 | 0.2113 | 0.8696 | |
| OVMD-AVERAGE | 3.6545 | 0.0098 | 0.1958 | 0.8696 | |
| DSDE | 2.2831 | 0.0038 | 0.1047 | 0.9565 | |
| 深 圳 港 | OVMD-DKELM-L | 2.1587 | 0.0080 | 0.0962 | 0.9565 | 
| OVMD-DKELM-G | 3.6493 | 0.0141 | 0.1671 | 0.8696 | |
| OVMD-DKELM-W | 1.7591 | 0.0063 | 0.0749 | 0.9130 | |
| OVMD-AVERAGE | 2.2196 | 0.0080 | 0.0952 | 0.9565 | |
| DSDE | 1.2456 | 0.0032 | 0.0448 | 1.0000 | |
| 广 州 港 | OVMD-DKELM-L | 3.4906 | 0.0164 | 0.2512 | 0.7391 | 
| OVMD-DKELM-G | 3.5752 | 0.0184 | 0.2823 | 0.7391 | |
| OVMD-DKELM-W | 3.4522 | 0.0167 | 0.2564 | 0.7391 | |
| OVMD-AVERAGE | 3.4715 | 0.0171 | 0.2628 | 0.7391 | |
| DSDE | 1.9748 | 0.0089 | 0.1479 | 0.9565 | |
| 厦 门 港 | OVMD-DKELM-L | 3.2451 | 0.0308 | 0.5021 | 0.6957 | 
| OVMD-DKELM-G | 1.0336 | 0.0097 | 0.1588 | 0.8261 | |
| OVMD-DKELM-W | 1.2468 | 0.0113 | 0.1846 | 0.8696 | |
| OVMD-AVERAGE | 1.3911 | 0.0129 | 0.2076 | 0.8696 | |
| DSDE | 0.7187 | 0.0084 | 0.1578 | 0.0896 | |
| 大 连 港 | OVMD-DKELM-L | 1.7331 | 0.0180 | 0.2430 | 1.0000 | 
| OVMD-DKELM-G | 1.8033 | 0.0195 | 0.2767 | 0.9565 | |
| OVMD-DKELM-W | 1.2904 | 0.0140 | 0.1951 | 0.9130 | |
| OVMD-AVERAGE | 1.5367 | 0.0165 | 0.2291 | 0.9565 | |
| DSDE | 1.1093 | 0.0789 | 0.1656 | 1.0000 | |
| 连 云 港 | OVMD-DKELM-L | 0.7332 | 0.0142 | 0.3021 | 0.7826 | 
| OVMD-DKELM-G | 0.4274 | 0.0084 | 0.1809 | 0.8261 | |
| OVMD-DKELM-W | 0.6736 | 0.0134 | 0.2877 | 0.7826 | |
| OVMD-AVERAGE | 0.5767 | 0.0118 | 0.2519 | 0.7826 | |
| DSDE | 0.3837 | 0.0045 | 0.1253 | 1.0000 | 
| [1] | 许利枝, 汪寿阳. 集装箱港口预测研究方法: 香港港实证研究[J]. 管理科学学报, 2015, 18(5): 46-56. | 
| Xu L Z, Wang S Y. Analysis and forecasting methodology for container port: A case study of Hong Kong port[J]. Journal of Management Sciences in China, 2015, 18(5): 46-56. | |
| [2] | 李德昌, 杨华龙, 宋巍, 等. 考虑船舶速度偏差的集装箱班轮运输货运收益鲁棒优化[J]. 中国管理科学, 2023, 31(4): 151-160. | 
| Li D C, Yang H L, Song W, et al. Freight revenue robust optimization for container liner shipping considering vessel sailing speed deviation[J]. Chinese Journal of Management Science, 2023, 31(4): 151-160. | |
| [3] | 孟斌, 张欣, 匡海波, 等. 基于政府调控的绿色智慧港口转型演化及扩散研究[J]. 中国管理科学, 2022, 30(8): 21-35. | 
| Meng B, Zhang X, Kuang H B, et al. Study on the evolutionary game and diffusion of green smart port construction under government regulation[J]. Chinese Journal of Management Science, 2022, 30(8): 21-35. | |
| [4] | 于少强, 周钰博, 陈康, 等. 基于GRA-GA-BP神经网络的港口集装箱吞吐量预测模型[J]. 物流技术, 2022, 41(9): 78-82. | 
| Yu S Q, Zhou Y B, Chen K, et al. Prediction model of port container throughput based on GRA-GA-BP neural network[J]. Logistics Technology, 2022, 41(9): 78-82. | |
| [5] | Chan H K, Xu S, Qi X. A comparison of time series methods for forecasting container throughput[J]. International Journal of Logistics Research and Applications, 2019, 22(3): 294-303. | 
| [6] | 桂德怀, 张显璇. 基于三次指数平滑法的上海港集装箱吞吐量预测分析[J]. 产业与科技论坛, 2020, 19(24): 59-60. | 
| Gui D H, Zhang X X. Prediction and analysis of container throughput in Shanghai port based on cubic exponential smoothing method[J]. Industrial & Science Tribune, 2020, 19(24): 59-60. | |
| [7] | 黎锁平, 刘坤会. 平滑系数自适应的二次指数平滑模型及其应用[J]. 系统工程理论与实践, 2004, 24(2): 95-99. | 
| Li S P, Liu K H. Quadric exponential smoothing model with adapted parameter and its applications[J]. Systems Engineering-Theory & Practice, 2004, 24(2): 95-99. | |
| [8] | 潘婷, 汪长江. 宁波舟山港货物吞吐量指数平滑预测分析[J]. 特区经济, 2018(6): 94-95. | 
| Pan T, Wang C J. Analysis of Ningbo Zhoushan Port’s cargo throughput forecast based on exponential smoothing method[J]. Special Zone Economy, 2018(6): 94-95. | |
| [9] | 汤霞, 匡海波, 郭媛媛, 等. 基于VMD的中国出口集装箱运价指数分析与组合预测[J]. 系统工程理论与实践, 2021, 41(1): 176-187. | 
| Tang X, Kuang H B, Guo Y Y, et al. Analysis and combined forecasting of China containerized freight index based on VMD[J]. Systems Engineering-Theory & Practice, 2021, 41(1): 176-187. | |
| [10] | 董洁霜, 潘杰, 周亦威. 基于SARIMA模型的上海港集装箱吞吐量预测[J]. 中国水运, 2022(2): 16-18. | 
| Dong J S, Pan J, Zhou Y W. Prediction of container throughput of Shanghai Port based on SARIMA model[J]. China Water Transport, 2022(2): 16-18. | |
| [11] | 邹国焱, 魏勇. 广义离散灰色预测模型及其应用[J]. 系统工程理论与实践, 2020, 40(3): 736-747. | 
| Zou G Y, Wei Y. Generalized discrete grey model and its application[J]. Systems Engineering-Theory & Practice, 2020, 40(3): 736-747. | |
| [12] | 曾波, 李惠, 余乐安, 等. 季节波动数据特征提取与分数阶灰色预测建模[J]. 系统工程理论与实践, 2022, 42(2): 471-486. | 
| Zeng B, Li H, Yu L A, et al. Feature extraction and fractional grey prediction modeling of seasonal fluctuation data[J]. Systems Engineering-Theory & Practice, 2022, 42(2): 471-486. | |
| [13] | Ghaderi H, Cahoon S, Nguyen H O. An investigation into the non-bulk rail freight transport in Australia[J]. Asian Journal of Shipping and Logistics, 2015, 31(1): 59-83. | 
| [14] | Sun J, Yu S. Research on relationship between port logistics and economic growth based on VAR: A case of Shanghai[J]. American Journal of Industrial and Business Management, 2019, 9(7): 1557-1567. | 
| [15] | Ni Y. Prediction of port container throughput based on grey prediction model: A case study of Shanghai port[J]. Academic Journal of Engineering and Technology Science, 2019, 2(5): 13-20. | 
| [16] | 李永立, 吴冲, 罗鹏. 引入反向传播机制的概率神经网络模型[J]. 系统工程理论与实践, 2014, 34(11): 2921-2928. | 
| Li Y L, Wu C, Luo P. Introducing the back-propagation into probabilistic neural network[J]. Systems Engineering-Theory & Practice, 2014, 34(11): 2921-2928. | |
| [17] | Zhang Y, Fu Y, Li G. Research on container throughput forecast based on ARIMA-BP neural network[J]. Journal of Physics: Conference Series, 2020, 1634(1): 012024. | 
| [18] | Huang A, Zhang Z, Shi X, et al. Forecasting container throughput with big data using a partially combined framework[C]//Proceedings of the 2015 International Conference on Transportation Information and Safety (ICTIS),Wuhan,China. June 25-28, 2015,IEEE, 2015: 641-646. | 
| [19] | Tang S, Xu S, Gao J. An optimal model based on multifactors for container throughput forecasting[J]. KSCE Journal of Civil Engineering, 2019, 23(9): 4124-4131. | 
| [20] | Yang F, Li M, Huang A, et al. Forecasting time series with genetic programming based on least square method[J]. Journal of Systems Science and Complexity, 2014, 27(1): 117-129. | 
| [21] | Intihar M, Kramberger T, Dragan D. Container throughput forecasting using dynamic factor analysis and ARIMAX model[J]. PROMET - Traffic&Transportation, 2017, 29(5): 529-542. | 
| [22] | 范厚明, 孔靓, 马梦知, 等. 交箱序列不确定下的堆场箱位分配及多场桥调度优化[J]. 系统工程理论与实践, 2021, 41(5): 1294-1306. | 
| Fan H M, Kong L, Ma M Z, et al. Storage space allocation and multi-yard cranes scheduling in terminal yard with container delivery time uncertain[J]. Systems Engineering-Theory & Practice, 2021, 41(5): 1294-1306. | |
| [23] | Huang A, Lai K, Li Y, et al. Forecasting container throughput of Qingdao port with a hybrid model[J]. Journal of Systems Science and Complexity, 2015, 28(1): 105-121. | 
| [24] | 彭亚美, 杨家其. 基于组合预测模型的武汉港集装箱吞吐量预测[J]. 物流技术, 2016, 35(3): 132-134+138. | 
| Peng Y M, Yang J Q. Forecasting of Wuhan Port container throughput based on combination forecasting model[J]. Logistics Technology, 2016, 35(3): 132-134+138. | |
| [25] | Xiao Y, Xiao J, Wang S Y. A hybrid model for time series forecasting[J]. Human Systems Management, 2012, 31(2): 133-143. | 
| [26] | Mo L, Xie L, Jiang X, et al. GMDH-based hybrid model for container throughput forecasting: Selective combination forecasting in nonlinear subseries[J]. Applied Soft Computing, 2018, 62: 478-490. | 
| [27] | Zha X, Chai Y, Witlox F, et al. Container throughput time series forecasting using a hybrid approach[C]//Proceedings of the 2015 Chinese Intelligent Systems Conference,Berlin, Heidelberg,January 1, Springer, 2016: 639-650. | 
| [28] | Xie G, Zhang N, Wang S. Data characteristic analysis and model selection for container throughput forecasting within a decomposition-ensemble methodology[J]. Transportation Research Part E: Logistics and Transportation Review, 2017, 108: 160-178. | 
| [29] | Schmidhuber J. Deep learning in neural networks: An overview[J]. Neural Networks, 2015, 61: 85-117. | 
| [30] | 肖进, 李思涵, 贺小舟, 等. 代价敏感的客户流失预测半监督集成模型研究[J]. 系统工程理论与实践, 2021, 41(1): 188-199. | 
| Xiao J, Li S H, He X Z, et al. Semi-supervised ensemble based on metacost model for customer churn prediction[J]. Systems Engineering-Theory & Practice, 2021, 41(1): 188-199. | |
| [31] | 吴俊杰, 刘冠男, 王静远, 等. 数据智能: 趋势与挑战[J]. 系统工程理论与实践, 2020, 40(8): 2116-2149. | 
| Wu J J, Liu G N, Wang J Y, et al. Data intelligence: Trends and challenges[J]. Systems Engineering-Theory & Practice, 2020, 40(8): 2116-2149. | |
| [32] | 鄢澜, 李思涵, 肖毅, 等. 基于Metacost的客户信用评估半监督异构集成模型研究[J]. 中国管理科学, 2022, 30(12): 211-221. | 
| Yan L, Li S H, Xiao Y, et al. Metacost based semi-supervised heterogeneous ensemble model for customer credit scoring[J]. Chinese Journal of Management Science, 2022, 30(12): 211-221. | |
| [33] | Yang C H, Chang P Y. Forecasting the demand for container throughput using a mixed-precision neural architecture based on CNN-LSTM[J]. Mathematics, 2020, 8(10): 1784. | 
| [34] | 肖进, 文章, 刘博, 等. 基于选择性深度集成的集装箱吞吐量混合预测模型研究[J]. 系统工程理论与实践, 2022, 42(4): 1107-1128. | 
| Xiao J, Wen Z, Liu B, et al. A hybrid model based on selective deep-ensemble for container throughput forecasting[J]. Systems Engineering-Theory & Practice, 2022, 42(4): 1107-1128. | |
| [35] | Dave E, Leonardo A, Jeanice M, et al. Forecasting Indonesia exports using a hybrid model ARIMA-LSTM[J]. Procedia Computer Science, 2021, 179: 480-487. | 
| [36] | Lian J, Liu Z, Wang H, et al. Adaptive variational mode decomposition method for signal processing based on mode characteristic[J]. Mechanical Systems and Signal Processing, 2018, 107: 53-77. | 
| [37] | Yang Y, Hong W, Li S. Deep ensemble learning based probabilistic load forecasting in smart grids[J]. Energy, 2019, 189: 116324. | 
| [38] | Xiao J, Zhou X, Zhong Y, et al. Cost-sensitive semi-supervised selective ensemble model for customer credit scoring[J]. Knowledge-Based Systems, 2020, 189: 105118. | 
| [39] | Buryan P, Onwubolu G C. Design of enhanced MIA-GMDH learning networks[J]. International Journal of Systems Science, 2011, 42(4): 673-693. | 
| [40] | Dragomiretskiy K, Zosso D. Variational mode decomposition[J]. IEEE Transactions on Signal Processing, 2014, 62(3): 531-544. | 
| [41] | 张丰婷, 杨菊花, 任金荟, 等. 基于优化变分模态分解和核极限学习机的集装箱吞吐量预测[J]. 计算机应用, 2022, 42(8): 2333-2342. | 
| Zhang F T, Yang J H, Ren J H, et al. Container throughput prediction based on optimal variational mode decomposition and kernel extreme learning machine[J]. Journal of Computer Applications, 2022, 42(8): 2333-2342. | |
| [42] | 罗宏远, 王德运, 刘艳玲, 等. 基于二层分解技术和改进极限学习机模型的PM2.5浓度预测研究[J]. 系统工程理论与实践, 2018, 38(5): 1321-1330. | 
| Luo H Y, Wang D Y, Liu Y L, et al. PM2.5 concentration forecasting based on two-layer decomposition technique and improved extreme learning machine[J]. Systems Engineering-Theory & Practice, 2018, 38(5): 1321-1330. | |
| [43] | Lv L, Wang W, Zhang Z, et al. A novel intrusion detection system based on an optimal hybrid kernel extreme learning machine[J]. Knowledge-Based Systems, 2020, 195: 105648. | 
| [44] | Ding S, Zhang N, Zhang J, et al. Unsupervised extreme learning machine with representational features[J]. International Journal of Machine Learning and Cybernetics, 2017, 8(2): 587-595.. | 
| [45] | Ismail Fawaz H, Forestier G, Weber J, et al. Deep learning for time series classification: A review[J]. Data Mining and Knowledge Discovery, 2019, 33(4): 917-963. | 
| [46] | Li J, Xi B, Du Q, et al. Deep kernel extreme-learning machine for the spectral-spatial classification of hyperspectral imagery[J]. Remote Sensing, 2018, 10(12): 2036. | 
| [47] | 颜学龙, 马润平. 基于深度极限学习机的模拟电路故障诊断[J].计算机工程与科学,2019,41(11): 1911-1918. | 
| Yan X L, Ma R P. Fault diagnosis of analog circuits based on deep extreme learning machine[J]. Computer Engineering & Science, 2019, 41(11): 1911-1918. | |
| [48] | Xiao J, Jia Y, Jiang X, et al. Circular complex-valued GMDH-type neural network for real-valued classification problems[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(12): 5285-5299. | 
| [49] | 肖进, 孙海燕, 刘敦虎, 等. 基于GMDH混合模型的能源消费量预测研究[J]. 中国管理科学, 2017, 25(12): 158-166. | 
| Xiao J, Sun H Y, Liu D H, et al. GMDH based hybrid model for China’s energy consumption prediction[J]. Chinese Journal of Management Science, 2017, 25(12): 158-166. | |
| [50] | Onwubolu G C. GMDH-Methodology and Implementation in MATLAB[M]. London: World Scientific, 2016. | 
| [51] | Li X, Ma X, Xiao F, et al. Time-series production forecasting method based on the integration of Bidirectional Gated Recurrent Unit (Bi-GRU) network and Sparrow Search Algorithm (SSA)[J]. Journal of Petroleum Science and Engineering, 2022, 208: 109309. | 
| [52] | Shankar S, Ilavarasan P V, Punia S, et al. Forecasting container throughput with long short-term memory networks[J]. Industrial Management & Data Systems, 2019, 120(3): 425-441. | 
| [53] | Xi B, Li J, Li Y, et al. Multiscale context-aware ensemble deep KELM for efficient hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(6): 5114-5130. | 
| [1] | YANG Chang-hui, SHAO Zhen, LIU Chen, FU Chao. A Hybrid Modeling Framework and Its Application for Exchange Traded Fund Options Pricing [J]. Chinese Journal of Management Science, 2020, 28(12): 44-53. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||
| 
 | ||