Chinese Journal of Management Science ›› 2025, Vol. 33 ›› Issue (11): 14-28.doi: 10.16381/j.cnki.issn1003-207x.2023.0192
Previous Articles Next Articles
Yang Lu1,2, Baofeng Shi1,2(
), Guotai Chi3, Yizhe Dong4
Received:2023-02-08
Revised:2023-08-01
Online:2025-11-25
Published:2025-11-28
Contact:
Baofeng Shi
E-mail:shibaofeng@nwsuaf.edu.cn
CLC Number:
Yang Lu,Baofeng Shi,Guotai Chi, et al. A Novel Nonlinear Credit Risk Evaluation Model and Its Empirical Analysis Based on Minimizing the Inversion Number of Loss Given Default Sequence[J]. Chinese Journal of Management Science, 2025, 33(11): 14-28.
"
| 指标名 | KNN | LR | SVM | DT | RF | GBDT | XGBoost | 逆序最小 |
|---|---|---|---|---|---|---|---|---|
| AUC | 0.920 | 0.939 | 0.951 | 0.838 | 0.944 | 0.939 | 0.942 | 0.947 |
| F1-score | 0.884 | 0.870 | 0.885 | 0.839 | 0.892 | 0.884 | 0.876 | 0.891 |
| Accuracy | 0.885 | 0.871 | 0.885 | 0.842 | 0.892 | 0.885 | 0.878 | 0.892 |
| 第一类错误率 | 0.043 | 0.029 | 0.029 | 0.086 | 0.029 | 0.050 | 0.058 | 0.058 |
| 第二类错误率 | 0.072 | 0.101 | 0.086 | 0.072 | 0.079 | 0.065 | 0.065 | 0.050 |
| 逆序值INVscore | 0.939 | 0.929 | 0.937 | 0.914 | 0.940 | 0.938 | 0.931 | 0.943 |
"
| 指标名 | KNN | LR | SVM | DT | RF | GBDT | XGBoost | 逆序最小 |
|---|---|---|---|---|---|---|---|---|
| AUC | 0.662 | 0.765 | 0.735 | 0.586 | 0.732 | 0.769 | 0.734 | 0.772 |
| F1-score | 0.584 | 0.681 | 0.639 | 0.587 | 0.640 | 0.700 | 0.648 | 0.687 |
| Accuracy | 0.680 | 0.705 | 0.735 | 0.660 | 0.725 | 0.765 | 0.715 | 0.730 |
| 第一类错误率 | 0.120 | 0.210 | 0.075 | 0.160 | 0.095 | 0.085 | 0.125 | 0.150 |
| 第二类错误率 | 0.200 | 0.085 | 0.190 | 0.180 | 0.180 | 0.150 | 0.160 | 0.120 |
| 逆序值INVscore | 0.640 | 0.750 | 0.662 | 0.635 | 0.665 | 0.719 | 0.685 | 0.722 |
"
| 指标名 | KNN | LR | SVM | DT | RF | GBDT | XGBoost | 逆序最小 |
|---|---|---|---|---|---|---|---|---|
| AUC | 0.699 | 0.727 | 0.621 | 0.609 | 0.771 | 0.788 | 0.773 | 0.728 |
| F1-score | 0.644 | 0.643 | 0.572 | 0.609 | 0.673 | 0.678 | 0.670 | 0.690 |
| Accuracy | 0.793 | 0.705 | 0.657 | 0.732 | 0.817 | 0.821 | 0.816 | 0.786 |
| 第一类错误率 | 0.058 | 0.218 | 0.227 | 0.133 | 0.038 | 0.034 | 0.038 | 0.107 |
| 第二类错误率 | 0.149 | 0.077 | 0.116 | 0.136 | 0.145 | 0.144 | 0.146 | 0.107 |
| 逆序值INVscore | 0.673 | 0.728 | 0.647 | 0.654 | 0.697 | 0.693 | 0.688 | 0.731 |
| [1] | 黄益平, 邱晗. 大科技信贷: 一个新的信用风险管理框架[J]. 管理世界, 2021, 37(2): 12-21+50+2+16. |
| Huang Y P, Qiu H. Big tech lending: A new credit risk management framework[J]. Journal of Management World, 2021, 37(2): 12-21+50+2+16. | |
| [2] | 周颖. 基于违约区分程度最大权重的信用评级模型[J]. 管理科学学报, 2019, 22(9): 52-66. |
| Zhou Y. Credit rating model based on weight of greatest default distinction degree[J]. Journal of Management Sciences in China, 2019, 22(9): 52-66. | |
| [3] | 石宝峰, 刘锋, 王建军, 等. 基于PROMETHEE-II的商户小额贷款信用评级模型及实证[J]. 运筹与管理, 2017, 26(9): 137-147. |
| Shi B F, Liu F, Wang J J, et al. A credit rating model of microfinance loans for small private business based on PROMETHEE-II and its empirical study[J]. Operations Research and Management Science, 2017, 26(9): 137-147. | |
| [4] | 迟国泰, 李鸿禧, 潘明道. 基于违约鉴别能力组合赋权的小企业信用评级——基于小型工业企业样本数据的实证分析[J]. 管理科学学报, 2018, 21(3): 105-126. |
| Chi G T, Li H X, Pan M D. Small enterprises credit rating based on default identification ability of combination weighting: Based on an empirical analysis of small industrial enterprises[J]. Journal of Management Sciences in China, 2018, 21(3): 105-126. | |
| [5] | 于善丽, 迟国泰, 姜欣. 基于指标体系违约鉴别能力最大的小企业债信评级体系及实证[J]. 中国管理科学, 2020, 28(6): 38-50. |
| Yu S L, Chi G T, Jiang X. Small enterprise facility rating based on the maximum discrimination of indicator system[J]. Chinese Journal of Management Science, 2020, 28(6): 38-50. | |
| [6] | Altman E I. Financial ratios, discriminant analysis and the prediction of corporate bankruptcy[J]. The Journal of Finance, 1968, 23(4): 589-609. |
| [7] | 牟刚, 袁先智. 大数据架构下企业内部信用评级的实证研究[J].系统工程学报, 2016,31(6): 808-815+849. |
| Mu G, Yuan X Z. Empirical study for enterprise internal credit rating under big data framework[J]. Journal of Systems Engineering, 2016, 31(6): 808-815+849. | |
| [8] | Chai N, Shi B, Hua Y. Loss given default or default status: Which is better to determine farmers’ credit ratings?[J]. Finance Research Letters, 2023, 53: 103674. |
| [9] | Zhang R, Xue L, Wang Q. An ensemble credit scoring model based on logistic regression with heterogeneous balancing and weighting effects[J]. Expert Systems with Applications, 2023, 212: 118732. |
| [10] | 黄志刚, 刘志惠, 朱建林. 多源数据信用评级普适模型栈框架的构建与应用[J]. 数量经济技术经济研究, 2019, 36(4): 155-168. |
| Huang Z G, Liu Z H, Zhu J L. A general stack framework of credit risk rating models based on multi source data[J]. The Journal of Quantitative & Technical Economics, 2019, 36(4): 155-168. | |
| [11] | 程砚秋. 基于不均衡数据的小企业信用风险评价[J]. 运筹与管理, 2016, 25(6): 181-189. |
| Cheng Y Q. Credit rating of small enterprises based on unbalanced data[J]. Operations Research and Management Science, 2016, 25(6): 181-189. | |
| [12] | 张卫国, 卢媛媛, 刘勇军. 基于非均衡模糊近似支持向量机的P2P网贷借款人信用风险评估及应用[J]. 系统工程理论与实践, 2018, 38(10): 2466-2478. |
| Zhang W G, Lu Y Y, Liu Y J. The borrowers' credit risk assessment in P2P platform based on fuzzy proximal support vector machine and its application[J]. Systems Engineering-Theory & Practice, 2018, 38(10): 2466-2478. | |
| [13] | 杨莲, 石宝峰. 基于Focal Loss修正交叉熵损失函数的信用风险评价模型及实证[J]. 中国管理科学, 2022, 30(5): 65-75. |
| Yang L, Shi B F. Credit risk evaluation model and empirical research based on focal loss modified cross-entropy loss function[J]. Chinese Journal of Management Science, 2022, 30(5): 65-75. | |
| [14] | 杨健安, 刘传斌, 余乐安. 基于相对逆序数的评审专家可信度评价方法[J]. 统计与决策, 2022, 38(3): 184-188. |
| Yang J A, Liu C B, Yu L A. Evaluation method of credibility of evaluation experts based on relative reverse order number[J]. Statistics & Decision, 2022, 38(3): 184-188. | |
| [15] | 刘进生, 王彩贤. 群体排序一致性的逆序数检验法[J]. 系统工程学报, 1996, 11(2): 89-93. |
| Liu J S, Wang C X. The testing method for consistency in group ordering based on the number of reverse order[J]. Journal of Systems Engineering, 1996, 11(2): 89-93. | |
| [16] | 迟国泰, 张亚京, 石宝峰. 基于Probit回归的小企业债信评级模型及实证[J]. 管理科学学报, 2016, 19(6): 136-156. |
| Chi G T, Zhang Y J, Shi B F. The debt rating for small enterprises based on Probit regression[J]. Journal of Management Sciences in China, 2016, 19(6): 136-156. | |
| [17] | 董路安, 叶鑫. 基于改进教学式方法的可解释信用风险评价模型构建[J]. 中国管理科学, 2020, 28(9): 45-53. |
| Dong L A, Ye X. Interpretable credit risk assessment modeling based on improved pedagogical method[J]. Chinese Journal of Management Science, 2020, 28(9): 45-53. | |
| [18] | Rezac M, Rezac F. How to measure the quality of credit scoring models[J]. Czech Journal of Economics and Finance, 2011, 61(5): 486-507. |
| [19] | Marinakis Y, Marinaki M, Doumpos M, et al. Ant colony and particle swarm optimization for financial classification problems[J]. Expert Systems with Applications, 2009, 36(7): 10604-10611. |
| [20] | 马晓君, 董碧滢, 王常欣. 一种基于PSO优化加权随机森林算法的上市公司信用评级模型设计[J]. 数量经济技术经济研究, 2019, 36(12): 165-182. |
| Ma X J, Dong B Y, Wang C X. Design of a credit rating model of quoted companies based on the PSO optimized weighted random forest algorithm[J]. The Journal of Quantitative & Technical Economics, 2019, 36(12): 165-182. | |
| [21] | He H, Zhang W, Zhang S. A novel ensemble method for credit scoring: Adaption of different imbalance ratios[J]. Expert Systems with Applications, 2018, 98: 105-117. |
| [22] | 杨莲, 石宝峰, 迟国泰, 等. 非均衡数据下基于BPNN-LDAMCE的信用评级模型设计及应用[J]. 数量经济技术经济研究, 2022, 39(3): 152-169. |
| Yang L, Shi B F, Chi G T, et al. Design and application of a credit rating model based on BPNN-LDAMCE with imbalanced data[J]. The Journal of Quantitative & Technical Economics, 2022, 39(3): 152-169. | |
| [23] | Zhou Y, Chi G, Liu J, et al. Default discrimination of credit card: Feature combination selection based on improved FDAF-score[J]. Expert Systems with Applications, 2022, 206: 117829. |
| [24] | Abedin M Z, Moon M H, Hassan M K, et al. Deep learning-based exchange rate prediction during the COVID-19 pandemic[J]. Annals of Operations Research, 2025, 345(2): 1335-1386. |
| [25] | 刘赛可, 何晓群, 夏利宇.不平衡数据下模型评价指标的有效性探讨[J].统计与决策,2022,38(19): 5-9. |
| Liu S K, He X Q, Xia L Y. Study on the validity of model evaluation index under imbalanced data[J]. Statistics & Decision, 2022, 38(19): 5-9. | |
| [26] | Lessmann S, Baesens B, Seow H V, et al. Benchmarking state-of-the-art classification algorithms for credit scoring: An update of research[J]. European Journal of Operational Research, 2015, 247(1): 124-136. |
| [27] | Lu Y, Yang L, Shi B, et al. A novel framework of credit risk feature selection for SMEs during industry 4.0[J]. Annals of Operations Research, 2025, 350(2): 425-452. |
| [28] | Wang D, Zhang Z, Bai R, et al. A hybrid system with filter approach and multiple population genetic algorithm for feature selection in credit scoring[J]. Journal of Computational and Applied Mathematics, 2018, 329: 307-321. |
| [29] | Zhang T, Chi G. A heterogeneous ensemble credit scoring model based on adaptive classifier selection: An application on imbalanced data[J]. International Journal of Finance & Economics, 2021, 26(3): 4372-4385. |
| [30] | Xiao J, Wang Y, Chen J, et al. Impact of resampling methods and classification models on the imbalanced credit scoring problems[J]. Information Sciences, 2021, 569: 508-526. |
| [1] | Yang Lu, Baofeng Shi. Min-max Algorithm for Matching Credit Ratings with Loss Given Default [J]. Chinese Journal of Management Science, 2025, 33(2): 28-37. |
| [2] | Yi-yun CHEN, Man-lian CHEN. Qualitative Textual Information and Credit Rating: A Study Based on Risk Information in the Annual Report Text Content [J]. Chinese Journal of Management Science, 2023, 31(9): 94-104. |
| [3] | YUAN George Xianzhi, , , , , , ZHAO Min, LIU Hai-yang, ZHOU Yun-peng, YAN Cheng-xing, SHI Bao-feng, CHAI Na-na, LIN Jian-wu, HE Cheng-ying, MA Sheng, ZHANG Qian-you, DING Xiao-wei. The Framework for Characteristic Factors of Poverty Statusby Using AI Algorithms:Related to the Path Choice of Rural Revitalization in China [J]. Chinese Journal of Management Science, 2022, 30(12): 234-244. |
| [4] | YAN Yan, LI Bo. Research on Influence Mechanism of Credit Ratings between Different Payers [J]. Chinese Journal of Management Science, 2022, 30(1): 1-11. |
| [5] | YU Shan-li, CHI Guo-tai, JIANG Xin. Small Enterprise Facility Rating Based on the Maximum Discrimination of Indicator System [J]. Chinese Journal of Management Science, 2020, 28(6): 38-50. |
| [6] | CHI Guo-tai, ZHANG Ya-jing, DING Shi-jie. Loan Portfolio Selection Model Based on Power Spectral Risk Measure and Monte Carlo Simulation [J]. Chinese Journal of Management Science, 2019, 27(9): 1-14. |
| [7] | SHI Bao-feng, WANG Jing, CHI Guo-tai. The Inclusive Finance, Bank Loans and Financing of Small Private Business Microfinance Loan-Based on Matching Credit Risk and Credit Rating [J]. Chinese Journal of Management Science, 2017, 25(9): 28-36. |
| [8] | ZHAO Zhi-chong, CHI Guo-tai. Facility Rating of Small Industrial Enterprises Based on Likelihood Ratio Test [J]. Chinese Journal of Management Science, 2017, 25(1): 45-56. |
| [9] | CHEN Guang-zhong, TANG Xiao-wo, NI De-bing. The Study on Bank Loss Given Default [J]. Chinese Journal of Management Science, 2010, 18(2): 19-24. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
||