主管:中国科学院
主办:中国优选法统筹法与经济数学研究会
   中国科学院科技战略咨询研究院

中国管理科学 ›› 2026, Vol. 34 ›› Issue (2): 56-66.doi: 10.16381/j.cnki.issn1003-207x.2023.0501cstr: 32146.14.j.cnki.issn1003-207x.2023.0501

• • 上一篇    下一篇

考虑投资者关注度的反转型在线投资组合策略

张永, 黄清梅, 郑萧腾, 王福鼎, 杨兴雨()   

  1. 广东工业大学管理学院,广东 广州 510520
  • 收稿日期:2023-03-29 修回日期:2024-01-15 出版日期:2026-02-25 发布日期:2026-02-04
  • 通讯作者: 杨兴雨 E-mail:yangxy@gdut.edu.cn
  • 基金资助:
    国家自然科学基金项目(72371080);广东省自然科学基金项目(2024A1515012670);广东省自然科学基金项目(2023A1515012840)

Reversal Online Portfolio Strategy with Investors' Attention

Yong Zhang, Qingmei Huang, Xiaoteng Zheng, Fuding Wang, Xingyu Yang()   

  1. School of Management,Guangdong University of Technology,Guangzhou 510520,China
  • Received:2023-03-29 Revised:2024-01-15 Online:2026-02-25 Published:2026-02-04
  • Contact: Xingyu Yang E-mail:yangxy@gdut.edu.cn

摘要:

人工智能和机器学习技术的发展,极大地提高了金融信息处理的效率,特别是能够挖掘对股票市场具有重要影响的隐性数据变量。已有研究发现,投资者关注度对股票市场存在较大的影响,因此,该文从投资者关注度这一隐性变量出发,研究反转型在线投资组合策略。首先,将股票的代码和简称作为搜索词,通过爬虫技术获取百度指数中两者的搜索指数之和,并基于搜索指数和平滑技术,构建了投资者关注度指标。然后,结合股票市场的反转效应,设计了考虑投资者关注度的反转型在线投资组合策略。最后,使用国内股票市场的历史交易数据进行了回溯测试。结果表明,该文设计的策略在提高投资收益和降低风险等性能方面表现较好,改进了已有的反转型在线投资组合策略。此外,该文还对策略涉及的时间窗口和滞后期窗口两个参数进行了敏感性分析,表明策略在一定的参数范围内具有较好的稳健性。

关键词: 投资者关注度, 百度指数, 反转效应, 在线投资组合

Abstract:

The development of artificial intelligence and machine learning technology has greatly improved the efficiency of financial information processing, especially the ability to mine hidden data variables that have important impacts on the stock market. It has been found that investors’ attention has a great impact on the stock market. Therefore, it starts from the implicit variable of investors’ attention in this paper, and reversal online portfolio strategies are studied. Firstly, the code and abbreviation of the stock are used as search terms, and the sum of the two in Baidu Index is obtained through web crawler technology. Based on search index and smoothing method, a measure of investor attention is constructed. Then, combined with the reversal effect of the stock market, the reversal online portfolio strategy is designed which takes into account the investors’ attention. Finally, a backtest is conducted using six Chinese stock datasets with differences in data sources and stock sizes. The results indicate that the strategy designed in this paper performs well in terms of returns and risks, improving existing online portfolio strategies based on mean reversal effect. The BD-AC strategy outperforms benchmark and traditional strategies on most datasets. Furthermore, sensitivity analysis is also conducted on two parameters of the strategy, including the time window and the lag window, which demonstrates good robustness within a certain range of parameters. It contributes to the field of online portfolio research in this paper by constructing a measure of investor attention based on Baidu index and introducing it into the Anticor model to improve the strategy.

Key words: investors’ attention, Baidu index, mean reversal effect, online portfolio

中图分类号: