| [1] |
周伟杰, 姜慧敏, 成雨珂, 等. 基于可重复性分数阶灰色时间幂模型的中国水电消费预测研究[J]. 中国管理科学, 2023, 31(5): 279-286.
|
|
Zhou W J, Jiang H M, Cheng Y K, et al. Forecasting Chinese hydropower consumption forecasting by using the repeatability fractional grey time power model[J]. Chinese Journal of Management Science, 2023, 31(5): 279-286.
|
| [2] |
陆信辉, 周开乐, 杨善林. 能源互联网环境下基于分布鲁棒优化的能量枢纽负荷优化调度[J]. 系统工程理论与实践, 2021, 41(11): 2850-2864.
|
|
Lu X H, Zhou K L, Yang S L. Optimal load dispatch of energy hub based on distributionally robust optimization approach in energy internet environment[J]. Systems Engineering —Theory & Practice, 2021, 41(11): 2850-2864.
|
| [3] |
Das S, Singh B. Mitigating impact of high power ramp rates in utility grid integrated wind–solar system using an RLMAT adaptive control strategy[J]. IEEE Transactions on Energy Conversion, 2023, 38(1): 343-354.
|
| [4] |
韩学山, 王心仪, 杨明, 等. 新能源爬坡事件综述及展望[J]. 山东大学学报(工学版), 2021(5): 53-62+75.
|
|
Han X S, Wang X Y, Yang M, et al. Review and prospect of renewable energy ramp events[J]. Journal of Shandong University (Engineering Science), 2021(5): 53-62+75.
|
| [5] |
Fujimoto Y, Takahashi Y, Hayashi Y. Alerting to rare large-scale ramp events in wind power generation[J]. IEEE Transactions on Sustainable Energy, 2019, 10(1): 55-65.
|
| [6] |
赵越, 徐博涵, 王聪, 等. 基于风电场功率预测的数据价值研究[J]. 工程管理科技前沿, 2023, 42(2): 34-42.
|
|
Zhao Y, Xu B H, Wang C, et al. Research on data value based on wind farm power prediction[J]. Frontiers of Science & Technology of Engineering Management, 2023, 42(2): 34-42.
|
| [7] |
Dalton A, Bekker B, Koivisto M J. Simulation and detection of wind power ramps and identification of their causative atmospheric circulation patterns[J]. Electric Power Systems Research, 2021, 192: 106936.
|
| [8] |
Dorado-Moreno M, Navarin N, Gutiérrez P A, et al. Multi-task learning for the prediction of wind power ramp events with deep neural networks[J]. Neural Networks, 2020, 123: 401-411.
|
| [9] |
Cui M, Feng C, Wang Z, et al. Statistical representation of wind power ramps using a generalized Gaussian mixture model[J]. IEEE Transactions on Sustainable Energy, 2018, 9(1): 261-272.
|
| [10] |
Drew D R, Cannon D J, Barlow J F, et al. The importance of forecasting regional wind power ramping: A case study for the UK[J]. Renewable Energy, 2017, 114: 1201-1208.
|
| [11] |
Zucatelli P J, Nascimento E G S, Santos A Á B, et al. An investigation on deep learning and wavelet transform to nowcast wind power and wind power ramp: A case study in Brazil and Uruguay[J]. Energy, 2021, 230: 120842.
|
| [12] |
Cui Y, Chen Z, He Y, et al. An algorithm for forecasting day-ahead wind power via novel long short-term memory and wind power ramp events[J]. Energy, 2023, 263: 125888.
|
| [13] |
Cui Y, He Y, Xiong X, et al. Algorithm for identifying wind power ramp events via novel improved dynamic swinging door[J]. Renewable Energy, 2021, 171: 542-556.
|
| [14] |
Cui M, Zhang J, Wang Q, et al. A data-driven methodology for probabilistic wind power ramp forecasting[J]. IEEE Transactions on Smart Grid, 2019, 10(2): 1326-1338.
|
| [15] |
Hu J, Zhang L, Tang J, et al. A novel transformer ordinal regression network with label diversity for wind power ramp events forecasting[J]. Energy, 2023, 280: 128075.
|
| [16] |
He Y, Zhu C, An X. A trend-based method for the prediction of offshore wind power ramp[J]. Renewable Energy, 2023, 209: 248-261.
|
| [17] |
李霞, 李守伟. 基于EMD与DVG的非线性时间序列预测模型及其应用研究[J]. 中国管理科学, 2022, 30(9): 275-286.
|
|
Li X, Li S W. Non-linear time series prediction model based on EMD and DVG and its application[J]. Chinese Journal of Management Science, 2022, 30(9): 275-286.
|
| [18] |
Gallego-Castillo C, Cuerva-Tejero A, Lopez-Garcia O. A review on the recent history of wind power ramp forecasting[J]. Renewable and Sustainable Energy Reviews, 2015, 52: 1148-1157.
|
| [19] |
徐思卿, 柯德平, 徐箭. 基于YOLOv5s的风电功率爬坡事件识别[J]. 武汉大学学报(工学版), 2022, 55(9): 910-918.
|
|
Xu S Q, Ke D P, Xu J. Wind power ramp event detection based on YOLOv5s[J]. Engineering Journal of Wuhan University, 2022, 55(9): 910-918.
|
| [20] |
Cui M, Krishnan V, Hodge B M, et al. A copula-based conditional probabilistic forecast model for wind power ramps[J]. IEEE Transactions on Smart Grid, 2019, 10(4): 3870-3882.
|
| [21] |
Liu L, Wang J. Super multi-step wind speed forecasting system with training set extension and horizontal–vertical integration neural network[J]. Applied Energy, 2021, 292: 116908.
|
| [22] |
Liu L, Wang J, Li J, et al. Dual-meta pool method for wind farm power forecasting with small sample data[J]. Energy, 2023, 267: 126504.
|
| [23] |
Shi X, Chen Z, Wang H, et al. Convolutional LSTM network: A machine learning approach for precipitation nowcasting [C]// Proceedings of the 29th International Conference on Neural Information Processing Systems, Montreal Canada, December 7-12 ,MIT Press, 2015: 802-810.
|
| [24] |
Kim Y, Jernite Y, Sontag D, et al. Character-aware neural language models[C]//Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence,Phoenix, Arizona, February 12-17, ACM, 2016: 2741-2749.
|
| [25] |
Li G, Zhang M, Li J, et al. Efficient densely connected convolutional neural networks[J]. Pattern Recognition, 2021, 109: 107610.
|
| [26] |
Ouyang T, Zha X, Qin L, et al. Prediction of wind power ramp events based on residual correction[J]. Renewable Energy, 2019, 136: 781-792.
|
| [27] |
童林, 官铮, 王立威, 等. 基于时序分解与误差修正的新能源爬坡事件预测[J]. 浙江大学学报(工学版), 2022, 56(2): 338-346.
|
|
Tong L, Guan Z, Wang L W, et al. New energy ramp event prediction based on time series decomposition and error correction[J]. Journal of Zhejiang University (Engineering Science), 2022, 56(2): 338-346.
|