中国管理科学 ›› 2026, Vol. 34 ›› Issue (2): 164-175.doi: 10.16381/j.cnki.issn1003-207x.2023.1065cstr: 32146.14.j.cnki.issn1003-207x.2023.1065
陈云峰1,2, 于雪1(
), 刘吉成1, 马旭颖1, 朱玺瑞1
收稿日期:2023-06-25
修回日期:2023-09-05
出版日期:2026-02-25
发布日期:2026-02-04
通讯作者:
于雪
E-mail:shenwenjieo@qq.com
基金资助:
Yunfeng Chen1,2, Xue Yu1(
), Jicheng Liu1, Xuying Ma1, Xirui Zhu1
Received:2023-06-25
Revised:2023-09-05
Online:2026-02-25
Published:2026-02-04
Contact:
Xue Yu
E-mail:shenwenjieo@qq.com
摘要:
为提高电煤企业库存风险评估的准确度和效率,本文提出一种金枪鱼群优化算法与最小二乘支持向量机(TSO-LS-SVM)的风险组合评价模型。首先,该方法利用金枪鱼群优化算法(tuna swarm optimization algorithm,TSO)实现了最小二乘法(least squares,LS)和支持向量机模型(support vector machine,SVM)的参数设置优化。其次,通过算例分析验证了所提TSO-LS-SVM模型在电煤库存风险评价中的适用性。再次,通过对比金枪鱼群优化算法、鲸鱼优化算法(whale optimization algorithm,WOA)和粒子群优化算法(particle swarm optimization,PSO)验证了本文所提方法的优越性。结果显示,TSO-LS-SVM模型收敛速度快,准确率更高,均方误差更小,在电煤库存风险评价中表现最优。最后,通过灵敏性分析从煤炭损耗、政策机遇、设施建设、员工素养和信息传导5个角度提出了风险管控策略,为电煤企业提高库存风险管控水平提供了参考。
中图分类号:
陈云峰,于雪,刘吉成, 等. 基于TSO-LS-SVM模型的电煤库存风险评价研究[J]. 中国管理科学, 2026, 34(2): 164-175.
Yunfeng Chen,Xue Yu,Jicheng Liu, et al. Research on Electric Coal Inventory Risk Assessment Based on TSO-LS-SVM Model[J]. Chinese Journal of Management Science, 2026, 34(2): 164-175.
表1
电煤库存风险评价指标体系"
| 一级风险指标 | 二级风险指标 | 三级风险指标 | 指标性质 | 正向/逆向 | |
|---|---|---|---|---|---|
| 电煤库存风险 | A1宏观风险 | B1政策风险 | C1政策亲和度[ | 定性 | - |
| C2产业结构调整[ | 定性 | + | |||
| B2经济风险 | C3经济增速[ | 定量 | + | ||
| C4利率波动幅度[ | 定量 | + | |||
| C5外汇波动幅度[ | 定量 | + | |||
| B3环境风险 | C6灾害影响程度[ | 定量 | + | ||
| B4市场风险 | C7电煤市场价格波动[ | 定量 | + | ||
| C8燃油价格波动[ | 定量 | + | |||
| C9电煤需求波动[ | 定量 | + | |||
| A2中观风险 | B5信息风险 | C10信息有效性[ | 定性 | - | |
| C11信息共享度[ | 定性 | - | |||
| C12信息对称性[ | 定性 | - | |||
| C13信息传导机制脆弱性[ | 定性 | + | |||
| B6合作风险 | C14合作意愿[ | 定性 | - | ||
| C15合作执行力[ | 定性 | - | |||
| C16企业间信用程度[ | 定量 | - | |||
| A3微观风险 | B7管理风险 | C17库存短缺程度[ | 定量 | + | |
| C18煤炭损耗率[ | 定量 | + | |||
| C19库存计划合理度[ | 定量 | - | |||
| C20设施损坏度(故障率)[ | 定量 | + | |||
| C21基础设施建设[ | 定量 | - | |||
| C22装卸设备匹配度[ | 定量 | - | |||
| C23库存调度可控性[ | 定量 | - | |||
| C24资金充足度[ | 定量 | - | |||
| B8煤场风险 | C25堆放条件(储存环境)[ | 定性 | - | ||
| C26煤场储量面积[ | 定量 | - | |||
| C27煤场通用性[ | 定量 | - | |||
| C28电厂分布均衡性[ | 定量 | - | |||
| C29煤种分布合理性[ | 定量 | - |
表6
风险因子灵敏性分析"
| 风险指标 | 准确率(%) | 最低均方误差 | 最低误差迭代次数 | 准确率与原精度差异 | 均方误差与原精度差异 | 重要性排序 |
|---|---|---|---|---|---|---|
| C1 | 70.0 | 0.2437 | 10 | 12.5 | 0.1375 | 2 |
| C2 | 82.5 | 0.1875 | 44 | 0.0 | 0.0813 | 28 |
| C3 | 80.0 | 0.1938 | 10 | 2.5 | 0.0876 | 23 |
| C4 | 77.5 | 0.2250 | 11 | 5.0 | 0.1188 | 15 |
| C5 | 77.5 | 0.2062 | 35 | 5.0 | 0.1000 | 17 |
| C6 | 72.5 | 0.2062 | 27 | 10 | 0.1000 | 7 |
| C7 | 80.0 | 0.2875 | 28 | 2.5 | 0.1813 | 19 |
| C8 | 82.5 | 0.2500 | 30 | 0.0 | 0.1438 | 25 |
| C9 | 82.5 | 0.2125 | 13 | 0.0 | 0.1063 | 27 |
| C10 | 75.0 | 0.2188 | 21 | 7.5 | 0.1126 | 11 |
| C11 | 82.5 | 0.1750 | 28 | 0.0 | 0.0688 | 29 |
| C12 | 82.5 | 0.2687 | 17 | 0.0 | 0.1625 | 24 |
| C13 | 70.0 | 0.2125 | 38 | 12.5 | 0.1063 | 5 |
| C14 | 90.0 | 0.1625 | 33 | 7.5 | 0.0563 | 12 |
| C15 | 77.5 | 0.2125 | 20 | 5.0 | 0.1063 | 16 |
| C16 | 75.0 | 0.2375 | 25 | 7.5 | 0.1313 | 9 |
| C17 | 75.0 | 0.2375 | 15 | 7.5 | 0.1313 | 10 |
| C18 | 62.5 | 0.2813 | 8 | 20 | 0.1751 | 1 |
| C19 | 70.0 | 0.2250 | 34 | 12.5 | 0.1188 | 4 |
| C20 | 80.0 | 0.2125 | 17 | 2.5 | 0.1063 | 22 |
| C21 | 70.0 | 0.2313 | 10 | 12.5 | 0.1251 | 3 |
| C22 | 72.5 | 0.1625 | 19 | 10.0 | 0.0563 | 8 |
| C23 | 77.5 | 0.2313 | 31 | 5.0 | 0.1251 | 13 |
| C24 | 72.5 | 0.2375 | 28 | 10 | 0.1313 | 6 |
| C25 | 87.5 | 0.1625 | 46 | 5.0 | 0.0563 | 18 |
| C26 | 87.5 | 0.2313 | 20 | 5.0 | 0.1251 | 14 |
| C27 | 80.0 | 0.2813 | 30 | 2.5 | 0.1751 | 20 |
| C28 | 85.0 | 0.2437 | 29 | 2.5 | 0.1375 | 21 |
| C29 | 82.5 | 0.2188 | 42 | 0.0 | 0.1126 | 26 |
| [1] | Roberts D, Graves R. Risk assessment myth busters: Defining risk management processes and terminology[J]. IEEE Industry Applications Magazine, 2020, 26(3): 22-28. |
| [2] | Hamdi F, Ghorbel A, Masmoudi F. Optimization of supply portfolio in context of supply chain risk management: Literature review[C]//Proceedongs of 2014 International Conference on Advanced Logistics and Transport (ICALT), Hammamet, Tunisia, May 1-3, IEEE, 2014: 374-379. |
| [3] | 王倩倩. 基于系统动力学的电煤供应链风险管理研究[D]. 北京: 华北电力大学, 2020. |
| Wang Q Q. Research on risk management of electric-coal supply chain based on System dynamics[D]. Beijing: North China Electric Power University, 2020. | |
| [4] | 莫聪颖. 基于CSCOR-RS的煤炭供应链风险识别和评价研究[D]. 淮南: 安徽理工大学, 2017. |
| Mo C Y. Research on risk identification and evaluation of coal supply chain based on CSCOR-RS[D]. Huainan: Anhui University of Science & Technology, 2017. | |
| [5] | 孙林辉, 李勋, 王新平. 基于AHP-ABC法的煤炭产业链供应链煤源环节风险因素分析[J]. 中国煤炭, 2023, 49(2): 18-28. |
| Sun L H, Li X, Wang X P. Risk factors analysis of coal source link in supply chain of coal industry chain based on AHP-ABC method[J]. China Coal, 2023, 49(2): 18-28. | |
| [6] | 刘平阔. 煤电能源供应链交易稳定匹配及风险管理研究[D]. 北京: 华北电力大学, 2016. |
| Liu P K. Research on coal-thermal plant transactions stable matching and energy supply chain risk management[D]. Beijing: North China Electric Power University, 2016. | |
| [7] | 左晨. 基于电商平台的煤炭供应链金融风险管理研究——以易煤网为例[D]. 南昌: 华东交通大学, 2021. |
| Zuo C. Research on financial risk management of coal supply chain based on E-commerce platform[D]. Nanchang: East China Jiaotong University, 2021. | |
| [8] | 王淑莉, 罗国甘, 许世朋.火电厂锅炉补给水处理系统调试安全风险防控[J].江西电力,2022,46(9): 50-52. |
| Wang S L, Luo G G, Xu S P. Prevention and control of safety risk in commissioning of boiler make-up water treatment system in thermal power plant[J]. Jiangxi Electric Power, 2022, 46(9): 50-52. | |
| [9] | 韩威. 火电厂安全风险的精细化管理[J]. 中国设备工程, 2022(21): 65-67. |
| Han W. Refined management of safety risks in thermal power plants[J]. China Plant Engineering, 2022(21): 65-67. | |
| [10] | 柏梦媛. ZB火力发电厂建设项目风险管理研究[D]. 西安: 西安电子科技大学, 2021. |
| Bai M Y. Study on risk management of ZB thermal power plant construction project[D]. Xi’an: Xidian University, 2021. | |
| [11] | 施琦皓, 滕舒帆, 郭钰渲, 等. 基于SPA和Markov的危险化学品道路运输企业风险评价方法研究[J]. 化工安全与环境, 2023, 36(4): 18-21. |
| Shi Q H, Teng S F, Guo Y X, et al. Research on risk assessment method of dangerous chemicals road transportation enterprises based on SPA and Markov[J]. Chemical Safety & Environment, 2023, 36(4): 18-21. | |
| [12] | 杨蕴华, 尹冰冰, 游春, 等. 基于AHP法和灰色关联度法的电网生产技改项目投资风险评价模型研究[J]. 电工技术, 2023(3): 40-44. |
| Yang Y H, Yin B B, You C, et al. Research on investment risk evaluation model of power grid production technical transformation project based on AHP method and grey correlation degree method[J]. Electric Engineering, 2023(3): 40-44. | |
| [13] | 余思勤, 刘仲敏. 基于FA-KM-GAHP模型的授信供应商风险的群体共识评价[J]. 上海大学学报(自然科学版), 2022, 28(6): 1008-1021. |
| Yu S Q, Liu Z M. Risk consensus assessment of credit suppliers based on the FA-KM-GAHP model[J]. Journal of Shanghai University (Natural Science Edition), 2022, 28(6): 1008-1021. | |
| [14] | 刘平山, 曾梓铭. 基于GBDT的医药供应链金融信用风险评价[J]. 会计之友, 2021(16): 24-31. |
| Liu P S, Zeng Z M. Financial credit risk evaluation of pharmaceutical supply chain based on GBDT[J]. Friends of Accounting, 2021(16): 24-31. | |
| [15] | Dong J, Huo H J. Research on the risk factors of power coal supply in China's shanxi province based on ISM[J]. Journal of Investment and Management, 2015, 4(6): 363-368. |
| [16] | Yang S X, Li R Y, Liu Y L, et al. Analysis on electricity-coal quality problems based on trust game model[J]. Applied Mechanics and Materials, 2014, 521: 777-781. |
| [17] | 姚力, 郑海峰, 单葆国, 等. 基于数据驱动机会约束的发电企业电煤采购及库存优化模型[J]. 中国电力, 2023, 56(6): 176-184. |
| Yao L, Zheng H F, Shan B G, et al. An optimization coal procurement and inventory model for power generation enterprises based on data-driven chance constraints[J]. Electric Power, 2023, 56(6): 176-184. | |
| [18] | 刘涛. 电力市场环境下燃煤电厂电煤库存优化的CVaR模型[J].信息记录材料,2018,19(6): 189-190. |
| Liu T. CVaR model for optimization of coal inventory in coal-fired power plants under electricity market environment[J]. Information Recording Materials, 2018, 19(6): 189-190. | |
| [19] | 贾政豪, 朱茳, 刘芳, 等. 电煤价格波动特性对火力发电行业影响研究——基于多重分形消除趋势分析法的实证研究[J]. 价格理论与实践, 2017(4): 147-150. |
| Jia Z H, Zhu J, Liu F, et al. Effect of coal price factual features on thermal power industry development: A case study based on MF-DFA method[J]. Price (Theory & Practice), 2017(4): 147-150. | |
| [20] | Hanczar P, Wawrzyniak D. Operational risk assessment for blockchain solutions in supply chains: A conceptual framework[C]//Proceedings of 35th International Business Information Management Association Conference (IBIMA), Seville, Spain, April 01-02, 2020. |
| [21] | Pan W, Miao L. Dynamics and risk assessment of a remanufacturing closed-loop supply chain system using the internet of things and neural network approach[J]. The Journal of Supercomputing, 2023, 79(4): 3878-3901. |
| [22] | Brandtner P. Predictive analytics and intelligent decision support systems in supply chain risk management—Research directions for future studies[C]//Proceedings of Seventh International Congress on Information and Communication Technology, London, Singapore,February 21–24, Springer, 2023: 549-558. |
| [23] | Paul S K, Riaz S, Das S. A conceptual architecture for AI in supply chain risk management[C]//Proceedings of TENCON 2022-2022 IEEE Region 10 Conference (TENCON). Hong Kong, China,November 1-4, IEEE, 2022: 1-5. |
| [24] | 王静. 协同驱动提升产业链供应链现代化水平的形成机制研究——基于BP-SVM联合优化模型[J]. 中国管理科学, 2023, 31(6): 196-206. |
| Wang J. Study on the formation mechanism of synergistic drive to upgrade the modernization level of industrial chain and supply chain: Based on BP-SVM joint optimization model[J]. Chinese Journal of Management Science, 2023, 31(6): 196-206. | |
| [25] | 杨莲, 石宝峰. 基于Focal Loss修正交叉熵损失函数的信用风险评价模型及实证[J]. 中国管理科学, 2022, 30(5): 65-75. |
| Yang L, Shi B F. Credit risk evaluation model and empirical research based on focal loss modified cross-entropy loss function[J]. Chinese Journal of Management Science, 2022, 30(5): 65-75. | |
| [26] | 杨怀珍, 胡葛君. 基于事故树与贝叶斯网络的农产品供应链风险评估[J]. 江苏农业科学, 2020, 48(5): 304-310. |
| Yang H Z, Hu G J. Risk assessment of agricultural product supply chain based on fault tree and Bayesian network[J]. Jiangsu Agricultural Sciences, 2020, 48(5): 304-310. | |
| [27] | 秦华礼, 祝艺露. 基于RF-1D-CNN的城市地下综合管廊施工安全风险评估[J]. 安全与环境学报, 2023, 23(7): 2184-2190. |
| Qin H L, Zhu Y L. Safety risk assessment of urban underground integrated pipe gallery construction based on RF-1D-CNN[J]. Journal of Safety and Environment, 2023, 23(7): 2184-2190. | |
| [28] | 王宁, 田家英, 董宁, 等. 基于改进SVM的智能电网调控系统实时风险评估与预警技术[J]. 沈阳工业大学学报, 2022, 44(1): 7-13. |
| Wang N, Tian J Y, Dong N, et al. Real-time risk-assessment and early-warning technology of smart grid regulation system based on improved SVM[J]. Journal of Shenyang University of Technology, 2022, 44(1): 7-13. | |
| [29] | 谭海燕. 电煤供应链风险评价研究[J]. 现代商贸工业, 2019, 40(11): 58-61. |
| Tan H Y. Study on risk assessment of coal supply chain[J]. Modern Business Trade Industry, 2019, 40(11): 58-61. | |
| [30] | 崔树银, 高攀. 基于层次分析法的电煤供应链风险评估研究[J].上海电力学院学报,2016,32(1):51-55+72. |
| Cui S Y, Gao P. Research on risk assessment of electricity coal supply chain based on AHP approach[J]. Journal of Shanghai University of Electric Power, 2016, 32(1): 51-55+72. | |
| [31] | 庞景文. “一带一路”背景下中国资源型企业跨国并购风险评价与防控研究[D]. 重庆: 重庆大学, 2022. |
| Pang J W. Study on the evaluation and prevention and control of cross-border M&A risks of Chinese resource-based enterprises in the context of “the Belt and Road”[D]. Chongqing: Chongqing University, 2022. | |
| [32] | 陈洁, 吕靖, 王尧. 供应链环节划分下的电煤物流风险评估和管控研究[J]. 中国安全科学学报, 2011, 21(2): 159-164. |
| Chen J, Lv J, Wang Y. Risk assessment and control of thermal coal logistics under supply chain link division[J]. China Safety Science Journal, 2011, 21(2): 159-164. | |
| [33] | 马立伟. 基于商务智能中心的煤电联盟协同决策研究[D]. 北京: 华北电力大学, 2010. |
| Ma L W. Research on collaborative decision-making of coal and power alliance based on business intelligence center[D]. Beijing: North China Electric Power University, 2010. | |
| [34] | Zhou X, Lu H, Ye S. The information transmission and risk contagion effect between green bond market and government bond market in China[J]. Frontiers in Environmental Science, 2023, 11: 1091203. |
| [35] | 董鑫. 燃煤发电企业煤炭供应风险控制方法研究[D]. 北京: 华北电力大学, 2014. |
| Dong X. Research on risk control methods of coal supply for[D]. Beijing: North China Electric Power University, 2014. | |
| [36] | Guo Y, Mauzerall D L, Lyu Y, et al. Benefits of infrastructure symbiosis between coal power and wastewater treatment[J]. Nature Sustainability, 2022, 5(12): 1070-1079. |
| [37] | 赵梓州. 电煤库存与船运调度两阶段模型研究[D]. 大连: 大连海事大学, 2021. |
| Zhao Z Z. A study on two-stage model of electric coal inventory and ship scheduling[D]. Dalian: Dalian Maritime University, 2021. |
| [1] | 陈耸,于秀运,邱涌钦,方匡南. 基于半监督支持向量机的信用评分模型[J]. 中国管理科学, 2024, 32(3): 1-8. |
| [2] | 周德强. 估计灰色Verhulst模型参数的LS-SVM方法及应用[J]. 中国管理科学, 2022, 30(3): 280-286. |
| [3] | 王昱, 杨珊珊. 考虑多维效率的上市公司财务困境预警研究[J]. 中国管理科学, 2021, 29(2): 32-41. |
| [4] | 董路安, 叶鑫. 基于改进教学式方法的可解释信用风险评价模型构建[J]. 中国管理科学, 2020, 28(9): 45-53. |
| [5] | 程砚秋, 徐占东. 基于泰尔指数修正的ELECTRE III小企业信用评价模型[J]. 中国管理科学, 2019, 27(10): 22-33. |
| [6] | 黄星, 袁明, 王绍玉. 基于Mexican Wv-SVM的震灾人员存活量模型[J]. 中国管理科学, 2016, 24(9): 140-146. |
| [7] | 王书平, 朱艳云. 基于多尺度分析的小麦价格预测研究[J]. 中国管理科学, 2016, 24(5): 85-91. |
| [8] | 衣柏衡, 朱建军, 李杰. 基于改进SMOTE的小额贷款公司客户信用风险非均衡SVM分类[J]. 中国管理科学, 2016, 24(3): 24-30. |
| [9] | 许启发, 张金秀, 蒋翠侠. 基于非线性分位数回归模型的多期VaR风险测度[J]. 中国管理科学, 2015, 23(3): 56-65. |
| [10] | 张亮, 张玲玲, 陈懿冰, 腾伟丽. 基于信息融合的数据挖掘方法在公司财务预警中的应用[J]. 中国管理科学, 2015, 23(10): 170-176. |
| [11] | 李战江, 迟国泰, 党均章. 基于copula的追随者银行的企业项目总体风险评价模型[J]. 中国管理科学, 2015, 23(1): 99-110. |
| [12] | 王书平, 胡爱梅, 吴振信. 基于多尺度组合模型的铜价预测研究[J]. 中国管理科学, 2014, 22(8): 21-28. |
| [13] | 赛英, 张凤廷, 张涛. 基于支持向量机的中国股指期货回归预测研究[J]. 中国管理科学, 2013, 21(3): 35-39. |
| [14] | 刘京礼, 李建平, 徐伟宣, 石勇. 信用评估中的鲁棒赋权自适应Lp最小二乘支持向量机方法[J]. 中国管理科学, 2010, 18(5): 28-33. |
| [15] | 赵琨, 孔祥纬, 田英杰. 带有多面体扰动的半监督v-支持向量分类机[J]. 中国管理科学, 2010, 18(1): 143-148. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
||