 
  
	中国管理科学 ›› 2025, Vol. 33 ›› Issue (10): 350-360.doi: 10.16381/j.cnki.issn1003-207x.2023.0017
收稿日期:2023-01-04
									
				
											修回日期:2023-03-21
									
				
									
				
											出版日期:2025-10-25
									
				
											发布日期:2025-10-24
									
			通讯作者:
					余乐安
											E-mail:yulean@amss.ac.cn
												基金资助:
        
               		Fang Wang1, Wenxin Cheng1, Lean Yu2( ), Rui Zha3
), Rui Zha3
			  
			
			
			
                
        
    
Received:2023-01-04
									
				
											Revised:2023-03-21
									
				
									
				
											Online:2025-10-25
									
				
											Published:2025-10-24
									
			Contact:
					Lean Yu   
											E-mail:yulean@amss.ac.cn
												摘要:
针对小数据代际更替电子产品的废弃量预测问题,提出了基于SIR(susceptible-infective-removed)传染病模型思想的预测方法。松弛SIR模型的约束条件,基于新代电子产品时间序列的小数据特征,构建了时间加权平均误差最小的STa(sales-transfer-adjustment)优化模型;引入PSO(particle swarm optimization)算法对STa模型进行参数估计,按照差分补偿预测的思想,确定转移量的合理滞后期,提高了对新代电子产品量的预测精度;立足电子产品数据的可得性,以电子废弃物生成量估计模型(estimation model of waste quantity of electronic products,EWE)实现了对新代电子产品废弃量的预测。基于我国农村电视机和手机4个数据集的实证分析表明,所构建的STa·PSO-EWE模型的性能总体优于其余基准对比模型。
中图分类号:
王方,程文鑫,余乐安, 等. 代际更替电子产品的废弃量预测与治理:小数据视角[J]. 中国管理科学, 2025, 33(10): 350-360.
Fang Wang,Wenxin Cheng,Lean Yu, et al. Predicting and Managing E-waste with Characteristics of Generational Replacement: A Perspective of Small Data[J]. Chinese Journal of Management Science, 2025, 33(10): 350-360.
 
												
												表1
基于1980年至1986年数据的农村每百户彩色电视机拥有量STa·PSO预测模型参数τ的选取"
| 时间 | SVN (t) | 滞后期τ | ||||||
|---|---|---|---|---|---|---|---|---|
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | ||
| 1985 | 0.8 | - | - | - | - | - | - | |
| 1986 | 1.52 | 1.1336 | 1.1399 | 1.1530 | 1.1810 | 1.2421 | 1.3707 | 1.6088 | 
| 1987 | 2.34 | 1.9297 | 1.9429 | 1.9709 | 2.0320 | 2.1605 | 2.3986 | 2.7700 | 
| 1988 | 2.8 | 2.7025 | 2.7305 | 2.7916 | 2.9202 | 3.1582 | 3.5296 | 4.0301 | 
| 1989 | 3.63 | 3.4742 | 3.5353 | 3.6638 | 3.9019 | 4.2733 | 4.7737 | 5.3954 | 
| 1990 | 4.72 | 4.3236 | 4.4521 | 4.6902 | 5.0616 | 5.5620 | 6.1837 | 6.9272 | 
| 1991 | 6.44 | 5.3414 | 5.5794 | 5.9508 | 6.4513 | 7.0729 | 7.8164 | 8.6923 | 
| 误差 | ||||||||
| 1986 | 基准误差(%) | 25.42 | 25.01 | 24.14 | 22.30 | 18.28 | 9.82 | 5.84 | 
| 1987 | 预测误差(%) | 17.53 | 16.97 | 15.77 | 13.16 | 7.67 | 2.50 | 18.37 | 
| 1988 | 3.48 | 2.48 | 0.30 | 4.29 | 12.79 | 26.06 | 43.93 | |
| 1989 | 4.29 | 2.61 | 0.93 | 7.49 | 17.72 | 31.51 | 48.63 | |
| 1990 | 8.40 | 5.67 | 0.63 | 7.24 | 17.84 | 31.01 | 46.76 | |
| 1991 | 17.06 | 13.36 | 7.60 | 0.17 | 9.83 | 21.37 | 34.97 | |
| 测试集MAPE(%) | 10.15 | 8.22 | 5.05 | 6.47 | 13.17 | 22.49 | 38.53 | |
| [1] | 澎湃新闻. 电子洋垃圾,穷人无法拒绝的“生存诱惑”[EB/OL].(2022-06-11)[2022-10-10]. . | 
| Paper The. Electronic foreign waste, the “survival temptation” that the poor can’t refuse[EB/OL].(2022-06-11) [2022-10-10].. | |
| [2] | Althaf S, Babbitt C W, Chen R. Forecasting electronic waste flows for effective circular economy planning[J]. Resources, Conservation and Recycling, 2019, 151: 104362. | 
| [3] | 王方, 余乐安, 查锐. 季节性数据特征驱动的电子废弃物回收规模分解集成预测建模研究[J]. 中国管理科学, 2022, 30(3): 199-210. | 
| Wang F, Yu L A, Zha R. Research on decomposition-ensemble approach for predicting E-waste recovery scale driven by seasonal data characteristics[J]. Chinese Journal of Management Science,2022,30(3): 199-210. | |
| [4] | Schumacher K A, Schumacher T, Agbemabiese L. Quantification and probabilistic modeling of CRT obsolescence for the state of Delaware[J]. Waste Management, 2014, 34(11): 2321-2326. | 
| [5] | 李博, 杨建新, 吕彬, 等. 废弃电器电子产品产生量估算——方法综述与选择策略[J]. 生态学报, 2015, 35(24): 7965-7973. | 
| Li B, Yang J X, Lv B,et al. Generation estimation of waste electrical and electronic equipment: Methods review and selection strategy[J]. Acta Ecologica Sinica, 2015, 35(24): 7965-7973. | |
| [6] | Liu X, Tanaka M, Matsui Y. Generation amount prediction and material flow analysis of electronic waste: A case study in Beijing, China[J]. Waste Management & Research, 2006, 24(5): 434-445. | 
| [7] | Koshta N, Patra S, Singh S P. Estimation of E-waste at micro level for reverse logistics: A case of Delhi[J]. Journal of Cleaner Production, 2021, 314: 128063. | 
| [8] | Yu J, Williams E, Ju M, et al. Forecasting global generation of obsolete personal computers[J]. Environmental Science & Technology, 2010, 44(9): 3232-3237. | 
| [9] | Dwivedy M, Mittal R K. Future trends in computer waste generation in India[J]. Waste Management, 2010, 30(11): 2265-2277. | 
| [10] | Zhang L, Yuan Z, Bi J, et al. Estimating future generation of obsolete household appliances in China[J]. Waste Management & Research, 2012, 30(11): 1160-1168. | 
| [11] | Nakatani J, Moriguchi Y. Time-series product and substance flow analyses of end-of-life electrical and electronic equipment in China[J]. Waste Management, 2014, 34(2): 489-497. | 
| [12] | Wang H, Gu Y, Wu Y, et al. An evaluation of the potential yield of indium recycled from end-of-life LCDs: A case study in China[J]. Waste Management, 2015, 46: 480-487. | 
| [13] | Tran H P, Wang F, Dewulf J, et al. Estimation of the unregistered inflow of electrical and electronic equipment to a domestic market: A case study on televisions in Vietnam[J]. Environmental Science & Technology, 2016, 50(5): 2424-2433. | 
| [14] | Li X, Ren Q, You X, et al. Material flow analysis of discarded refrigerators from households in urban and rural areas of China[J]. Resources, Conservation and Recycling, 2019, 149: 577-585. | 
| [15] | Zhang S, Gu Y, Tang A, et al. Forecast of future yield for printed circuit board resin waste generated from major household electrical and electronic equipment in China[J]. Journal of Cleaner Production, 2021, 283: 124575. | 
| [16] | 刘志峰, 薛雅琼, 黄海鸿. 我国大陆地区电器电子产品报废量预测研究[J]. 环境科学学报, 2016, 36(5): 1875-1882. | 
| Liu Z F, Xue Y Q, Huang H H. Prediction of the quantities of waste electric and electronic products in China’s mainland[J]. Acta Scientiae Circumstantiae, 2016, 36(5): 1875-1882. | |
| [17] | Zeng X, Gong R, Chen W Q, et al. Uncovering the recycling potential of “new” WEEE in China[J]. Environmental Science & Technology, 2016, 50(3): 1347-1358. | 
| [18] | Zeng X, Ali S H, Tian J, et al. Mapping anthropogenic mineral generation in China and its implications for a circular economy[J]. Nature Communications, 2020, 11(1): 1544. | 
| [19] | 王琪, 杨旸, 马红烨. 废弃电子产品资源化潜力预测模型研究[J]. 中国人口·资源与环境, 2014, 24(11): 147-153. | 
| Wang Q, Yang Y, Ma H Y. Research on prediction models of electronic waste recycling potential[J]. China Population, Resources and Environment, 2014, 24(11): 147-153. | |
| [20] | 梁晓辉, 李光明, 黄菊文, 等. 上海市电子废弃物产生量预测与回收网络建立[J]. 环境科学学报, 2010, 30(5): 1115-1120. | 
| Liang X H, Li G M, Huang J W, et al. Estimation of waste electrical and electronic equipment(WEEE) generation and establishment of a recovery network in Shanghai[J]. Acta Scientiae Circumstantiae, 2010, 30(5): 1115-1120. | |
| [21] | Mao S, Kang Y, Zhang Y, et al. Fractional grey model based on non-singular exponential kernel and its application in the prediction of electronic waste precious metal content[J]. ISA Transactions, 2020, 107: 12-26. | 
| [22] | Duman G M, Kongar E, Gupta S M. Estimation of electronic waste using optimized multivariate grey models[J]. Waste Management, 2019, 95: 241-249. | 
| [23] | Zhao M, Zhao C, Yu L, et al. Prediction and analysis of WEEE in China based on the gray model[J]. Procedia Environmental Sciences, 2016, 31: 925-934. | 
| [24] | Ene S, Öztürk N. Grey modelling based forecasting system for return flow of end-of-life vehicles[J]. Technological Forecasting and Social Change, 2017, 115: 155-166. | 
| [25] | Duman G M, Kongar E, Gupta S M. Predictive analysis of electronic waste for reverse logistics operations: A comparison of improved univariate grey models[J]. Soft Computing, 2020, 24(20): 15747-15762. | 
| [26] | Machado Santos S, Cabral Neto J, Mendonça Silva M. Forecasting model to assess the potential of secondary lead production from lead acid battery scrap[J]. Environmental Science and Pollution Research, 2019, 26(6): 5782-5793. | 
| [27] | Islam M T, Huda N. E-waste in Australia: Generation estimation and untapped material recovery and revenue potential[J]. Journal of Cleaner Production, 2019, 237: 117787. | 
| [28] | Mairizal A Q, Sembada A Y, Tse K M, et al. Electronic waste generation, economic values, distribution map, and possible recycling system in Indonesia[J]. Journal of Cleaner Production, 2021, 293: 126096. | 
| [29] | Wang F, Yu L, Wu A. Forecasting the electronic waste quantity with a decomposition-ensemble approach[J].Waste Management,2021,120: 828-838. | 
| [30] | Wang F, Liu Q, Yu L, et al. Multi-data source-based recycling value estimation of wasted domestic electrical storage water heater in China[J]. Waste Management, 2022, 140: 63-73. | 
| [31] | 吕君, 杜世昌. 废旧电器电子产品回收预测的时间-空间模型研究[J]. 工业工程与管理, 2017, 22(6): 92-98+106. | 
| Lv J, Du S C. Time-space modeling of waste electrical and electronic equipment return prediction[J]. Industrial Engineering and Management, 2017, 22(6): 92-98+106. | |
| [32] | 李历铨, 李伯含, 陈从喜. 区域层面电子废弃物远景资源化潜力预测——以北京为例[J]. 资源科学, 2021, 43(3): 567-576. | 
| Li L Q, Li B H, Chen C X. Forecasting prospective potential of the secondary resources in electronic waste at the regional level: Evidence from Beijing[J]. Resources Science, 2021, 43(3): 567-576. | |
| [33] | 郭立夫, 毛传虎. 高技术产品更新换代模型研究[J]. 数量经济技术经济研究, 1999, 16(2): 50-51. | 
| Guo L F, Mao C H. Research on the model of high-tech product upgrading[J]. Quantitative & Technica Economics, 1999, 16(2): 50-51. | |
| [34] | Jha A, Saha D. “Forecasting and analysing the characteristics of 3G and 4G mobile broadband diffusion in India: A comparative evaluation of Bass, Norton-Bass, Gompertz, and logistic growth models”[J]. Technological Forecasting and Social Change, 2020, 152: 119885. | 
| [35] | Jiang Z, Jain D C. A generalized Norton–bass model for multigeneration diffusion[J]. Management Science, 2012, 58(10): 1887-1897. | 
| [36] | Tseng F M, Cheng A C, Peng Y N. Assessing market penetration combining scenario analysis, Delphi, and the technological substitution model: The case of the OLED TV market[J]. Technological Forecasting and Social Change, 2009, 76(7): 897-909. | 
| [37] | Hapuwatte B M, Badurdeen F, Bagh A, et al. Optimizing sustainability performance through component commonality for multi-generational products[J]. Resources, Conservation and Recycling, 2022, 180: 105999. | 
| [38] | Zhang Y, Guo H, Sun M, et al. A novel grey Lotka-Volterra model driven by the mechanism of competition and cooperation for energy consumption forecasting[J]. Energy, 2023, 264: 126154. | 
| [39] | He M, Lee J. Social culture and innovation diffusion: A theoretically founded agent-based model[J]. Journal of Evolutionary Economics, 2020, 30(4): 1109-1149. | 
| [40] | 罗荣桂, 江涛. 基于SIR传染病模型的技术扩散模型的研究[J]. 管理工程学报, 2006, 20(1): 32-35. | 
| Luo R G, Jiang T. The research of technology diffusion model based on the SIR epidemic model[J]. Journal of Industrial Engineering and Engineering Management, 2006, 20(1): 32-35. | |
| [41] | 杨湘浩, 段哲哲, 王筱莉. 考虑遗忘机制的企业隐性知识传播SIR模型研究[J]. 中国管理科学, 2019, 27(7): 195-202. | 
| Yang X H, Duan Z Z, Wang X L. Enterprise tacit knowledge propagation SIR model with consideration of forgetting mechanisms[J]. Chinese Journal of Management Science, 2019, 27(7): 195-202. | |
| [42] | 谢卫红, 杨超波, 朱郁筱. 食品安全网络舆情的重复感染SIR模型研究[J]. 系统工程学报, 2022, 37(2): 145-160. | 
| Xie W H, Yang C B, Zhu Y X. Research on repeated infection SIR model of network public opinion about food safety[J]. Journal of Systems Engineering, 2022, 37(2): 145-160. | |
| [43] | Kitchin R, Lauriault T P. Small data in the era of big data[J]. GeoJournal, 2015, 80(4): 463-475. | 
| [44] | 陈彦晖, 刘斌. 基于广义等高线的灰色波形预测模型及其应用[J].中国管理科学, 2017, 25(8): 134-139. | 
| Chen Y H, Liu B. Grey wave forecasting model with generalized contour lines and its application[J]. Chinese Journal of Management Science,2017,25(8): 134-139. | |
| [45] | 童昕, 蔡一帆, 颜琳. 基于“家电以旧换新” 回收数据评估电子废物产生量估算方法[J]. 生态经济, 2013, 29(7): 38-42. | 
| Tong X, Cai Y F, Yan L. Generation and collection of WEEE in pilot areas of HARS: An empirical study[J]. Ecological Economy, 2013, 29(7): 38-42. | |
| [46] | 黄慧婷, 童昕, 蔡毅, 等.电器电子产品废弃量估算方法再评估[J].生态经济,2019,35(11): 211-216+229. | 
| Huang H T, Tong X, Cai Y, et al. Re-examination on estimation methods for WEEE generation in China[J]. Ecological Economy, 2019, 35(11): 211-216+229. | |
| [47] | 马晓琴, 王颖婕. 我国废弃智能手机回收利用研究[J]. 北京交通大学学报(社会科学版), 2021, 20(1): 116-124. | 
| Ma X Q, Wang Y J. Research on recycling of discarded smart phones in China[J]. Journal of Beijing Jiaotong University (Social Sciences Edition), 2021, 20(1): 116-124. | |
| [48] | Jain M, Saihjpal V, Singh N, et al. An overview of variants and advancements of PSO algorithm[J]. Applied Sciences, 2022, 12(17): 8392. | 
| [49] | Montaño Moreno J, Palmer Pol A, Sesé Abad A, et al. Using the R-MAPE index as a resistant measure of forecast accuracy[J]. Psicothema,2013, 4(25): 500-506. | 
| [50] | 崔金鑫, 邹辉文. 基于EWT-SSA-PSO-ELM模型的P2P网贷市场收益率预测[J]. 系统工程学报, 2021, 36(3): 367-381. | 
| Cui J X, Zou H W. Prediction of P2P online lending market yield based on EWT-SSA-PSO-ELM model[J]. Journal of Systems Engineering, 2021, 36(3): 367-381. | |
| [51] | 央视国际. 电子垃圾拉响我国环保新警报[EB/OL]. (2006-09-06) [2022-10-10].. | 
| CCTV. E-waste raises a new alarm of environmental protection in our country[EB/OL].(2006-09-06) [2022-10-10].. | 
| [1] | 胡玉真, 王思睿, 左傲宇. 社区新零售背景下网格仓需求预测——配送决策迭代优化研究[J]. 中国管理科学, 2025, 33(7): 168-177. | 
| [2] | 苟小义, 米传民, 曾波, 李明珠, 徐盈婷. 纵横维度视角下的新型季节离散灰色预测模型及其应用[J]. 中国管理科学, 2025, 33(7): 178-186. | 
| [3] | 郑秋爽, 王长峰. 基于多元集成分析的矿井突水风险预测优化模型及算法研究[J]. 中国管理科学, 2025, 33(7): 187-199. | 
| [4] | 王明珠, 郭林江, 刘怡君. 考虑网民心理因素的网络舆情干预时机研究[J]. 中国管理科学, 2025, 33(6): 140-150. | 
| [5] | 许帅, 邵帅, 何贤杰. 业绩说明会前瞻性信息对分析师盈余预测准确性的影响[J]. 中国管理科学, 2025, 33(3): 34-44. | 
| [6] | 李新, 张旭, 余乐安, 汪寿阳. 基于改进Transformer模型的景区短时客流预测研究[J]. 中国管理科学, 2025, 33(2): 105-117. | 
| [7] | 马梦迪, 李烁, 王玉涛. 中国分析师报告有效性研究:特定信息与投资者有限关注[J]. 中国管理科学, 2025, 33(2): 38-49. | 
| [8] | 宋诗佳, 田飞, 李汉东. 基于时变极值方法的VaR预测模型以及应用[J]. 中国管理科学, 2025, 33(2): 61-70. | 
| [9] | 寇宇轩, 李思涵, 刘敦虎, 李若依, 黄静, 肖进. 基于DKELM选择性深度集成的集装箱吞吐量预测模型研究[J]. 中国管理科学, 2025, 33(10): 24-35. | 
| [10] | 罗鹏飞, 姚彦铭, 谭英贤. 突发公共卫生事件下企业委托代理问题与最优资本结构[J]. 中国管理科学, 2025, 33(10): 47-56. | 
| [11] | 李星毅, 李仲飞, 李其谦, 刘昱君, 唐文金. 基于机器学习的资产收益率预测研究综述[J]. 中国管理科学, 2025, 33(1): 311-322. | 
| [12] | 闫泓序,余顺坤. 基于画像的员工离职预测模型研究[J]. 中国管理科学, 2024, 32(9): 303-312. | 
| [13] | 李树良,杨爽艺,曾波,孟伟,白云. 离散型灰色预测模型的无偏性与自适应性及其应用[J]. 中国管理科学, 2024, 32(8): 149-158. | 
| [14] | 于孝建,刘国鹏,刘建林,肖炜麟. 基于LSTM网络和文本情感分析的股票指数预测[J]. 中国管理科学, 2024, 32(8): 25-35. | 
| [15] | 蔡毅,唐振鹏,吴俊传,杜晓旭,陈凯杰. 基于灰狼优化的混频支持向量机在股指预测与投资决策中的应用研究[J]. 中国管理科学, 2024, 32(5): 73-80. | 
| 阅读次数 | ||||||
| 全文 |  | |||||
| 摘要 |  | |||||
| 
 | ||