| [1] |
许利枝, 汪寿阳. 集装箱港口预测研究方法: 香港港实证研究[J]. 管理科学学报, 2015, 18(5): 46-56.
|
|
Xu L Z, Wang S Y. Analysis and forecasting methodology for container port: A case study of Hong Kong port[J]. Journal of Management Sciences in China, 2015, 18(5): 46-56.
|
| [2] |
李德昌, 杨华龙, 宋巍, 等. 考虑船舶速度偏差的集装箱班轮运输货运收益鲁棒优化[J]. 中国管理科学, 2023, 31(4): 151-160.
|
|
Li D C, Yang H L, Song W, et al. Freight revenue robust optimization for container liner shipping considering vessel sailing speed deviation[J]. Chinese Journal of Management Science, 2023, 31(4): 151-160.
|
| [3] |
孟斌, 张欣, 匡海波, 等. 基于政府调控的绿色智慧港口转型演化及扩散研究[J]. 中国管理科学, 2022, 30(8): 21-35.
|
|
Meng B, Zhang X, Kuang H B, et al. Study on the evolutionary game and diffusion of green smart port construction under government regulation[J]. Chinese Journal of Management Science, 2022, 30(8): 21-35.
|
| [4] |
于少强, 周钰博, 陈康, 等. 基于GRA-GA-BP神经网络的港口集装箱吞吐量预测模型[J]. 物流技术, 2022, 41(9): 78-82.
|
|
Yu S Q, Zhou Y B, Chen K, et al. Prediction model of port container throughput based on GRA-GA-BP neural network[J]. Logistics Technology, 2022, 41(9): 78-82.
|
| [5] |
Chan H K, Xu S, Qi X. A comparison of time series methods for forecasting container throughput[J]. International Journal of Logistics Research and Applications, 2019, 22(3): 294-303.
|
| [6] |
桂德怀, 张显璇. 基于三次指数平滑法的上海港集装箱吞吐量预测分析[J]. 产业与科技论坛, 2020, 19(24): 59-60.
|
|
Gui D H, Zhang X X. Prediction and analysis of container throughput in Shanghai port based on cubic exponential smoothing method[J]. Industrial & Science Tribune, 2020, 19(24): 59-60.
|
| [7] |
黎锁平, 刘坤会. 平滑系数自适应的二次指数平滑模型及其应用[J]. 系统工程理论与实践, 2004, 24(2): 95-99.
|
|
Li S P, Liu K H. Quadric exponential smoothing model with adapted parameter and its applications[J]. Systems Engineering-Theory & Practice, 2004, 24(2): 95-99.
|
| [8] |
潘婷, 汪长江. 宁波舟山港货物吞吐量指数平滑预测分析[J]. 特区经济, 2018(6): 94-95.
|
|
Pan T, Wang C J. Analysis of Ningbo Zhoushan Port’s cargo throughput forecast based on exponential smoothing method[J]. Special Zone Economy, 2018(6): 94-95.
|
| [9] |
汤霞, 匡海波, 郭媛媛, 等. 基于VMD的中国出口集装箱运价指数分析与组合预测[J]. 系统工程理论与实践, 2021, 41(1): 176-187.
|
|
Tang X, Kuang H B, Guo Y Y, et al. Analysis and combined forecasting of China containerized freight index based on VMD[J]. Systems Engineering-Theory & Practice, 2021, 41(1): 176-187.
|
| [10] |
董洁霜, 潘杰, 周亦威. 基于SARIMA模型的上海港集装箱吞吐量预测[J]. 中国水运, 2022(2): 16-18.
|
|
Dong J S, Pan J, Zhou Y W. Prediction of container throughput of Shanghai Port based on SARIMA model[J]. China Water Transport, 2022(2): 16-18.
|
| [11] |
邹国焱, 魏勇. 广义离散灰色预测模型及其应用[J]. 系统工程理论与实践, 2020, 40(3): 736-747.
|
|
Zou G Y, Wei Y. Generalized discrete grey model and its application[J]. Systems Engineering-Theory & Practice, 2020, 40(3): 736-747.
|
| [12] |
曾波, 李惠, 余乐安, 等. 季节波动数据特征提取与分数阶灰色预测建模[J]. 系统工程理论与实践, 2022, 42(2): 471-486.
|
|
Zeng B, Li H, Yu L A, et al. Feature extraction and fractional grey prediction modeling of seasonal fluctuation data[J]. Systems Engineering-Theory & Practice, 2022, 42(2): 471-486.
|
| [13] |
Ghaderi H, Cahoon S, Nguyen H O. An investigation into the non-bulk rail freight transport in Australia[J]. Asian Journal of Shipping and Logistics, 2015, 31(1): 59-83.
|
| [14] |
Sun J, Yu S. Research on relationship between port logistics and economic growth based on VAR: A case of Shanghai[J]. American Journal of Industrial and Business Management, 2019, 9(7): 1557-1567.
|
| [15] |
Ni Y. Prediction of port container throughput based on grey prediction model: A case study of Shanghai port[J]. Academic Journal of Engineering and Technology Science, 2019, 2(5): 13-20.
|
| [16] |
李永立, 吴冲, 罗鹏. 引入反向传播机制的概率神经网络模型[J]. 系统工程理论与实践, 2014, 34(11): 2921-2928.
|
|
Li Y L, Wu C, Luo P. Introducing the back-propagation into probabilistic neural network[J]. Systems Engineering-Theory & Practice, 2014, 34(11): 2921-2928.
|
| [17] |
Zhang Y, Fu Y, Li G. Research on container throughput forecast based on ARIMA-BP neural network[J]. Journal of Physics: Conference Series, 2020, 1634(1): 012024.
|
| [18] |
Huang A, Zhang Z, Shi X, et al. Forecasting container throughput with big data using a partially combined framework[C]//Proceedings of the 2015 International Conference on Transportation Information and Safety (ICTIS),Wuhan,China. June 25-28, 2015,IEEE, 2015: 641-646.
|
| [19] |
Tang S, Xu S, Gao J. An optimal model based on multifactors for container throughput forecasting[J]. KSCE Journal of Civil Engineering, 2019, 23(9): 4124-4131.
|
| [20] |
Yang F, Li M, Huang A, et al. Forecasting time series with genetic programming based on least square method[J]. Journal of Systems Science and Complexity, 2014, 27(1): 117-129.
|
| [21] |
Intihar M, Kramberger T, Dragan D. Container throughput forecasting using dynamic factor analysis and ARIMAX model[J]. PROMET - Traffic&Transportation, 2017, 29(5): 529-542.
|
| [22] |
范厚明, 孔靓, 马梦知, 等. 交箱序列不确定下的堆场箱位分配及多场桥调度优化[J]. 系统工程理论与实践, 2021, 41(5): 1294-1306.
|
|
Fan H M, Kong L, Ma M Z, et al. Storage space allocation and multi-yard cranes scheduling in terminal yard with container delivery time uncertain[J]. Systems Engineering-Theory & Practice, 2021, 41(5): 1294-1306.
|
| [23] |
Huang A, Lai K, Li Y, et al. Forecasting container throughput of Qingdao port with a hybrid model[J]. Journal of Systems Science and Complexity, 2015, 28(1): 105-121.
|
| [24] |
彭亚美, 杨家其. 基于组合预测模型的武汉港集装箱吞吐量预测[J]. 物流技术, 2016, 35(3): 132-134+138.
|
|
Peng Y M, Yang J Q. Forecasting of Wuhan Port container throughput based on combination forecasting model[J]. Logistics Technology, 2016, 35(3): 132-134+138.
|
| [25] |
Xiao Y, Xiao J, Wang S Y. A hybrid model for time series forecasting[J]. Human Systems Management, 2012, 31(2): 133-143.
|
| [26] |
Mo L, Xie L, Jiang X, et al. GMDH-based hybrid model for container throughput forecasting: Selective combination forecasting in nonlinear subseries[J]. Applied Soft Computing, 2018, 62: 478-490.
|
| [27] |
Zha X, Chai Y, Witlox F, et al. Container throughput time series forecasting using a hybrid approach[C]//Proceedings of the 2015 Chinese Intelligent Systems Conference,Berlin, Heidelberg,January 1, Springer, 2016: 639-650.
|
| [28] |
Xie G, Zhang N, Wang S. Data characteristic analysis and model selection for container throughput forecasting within a decomposition-ensemble methodology[J]. Transportation Research Part E: Logistics and Transportation Review, 2017, 108: 160-178.
|
| [29] |
Schmidhuber J. Deep learning in neural networks: An overview[J]. Neural Networks, 2015, 61: 85-117.
|
| [30] |
肖进, 李思涵, 贺小舟, 等. 代价敏感的客户流失预测半监督集成模型研究[J]. 系统工程理论与实践, 2021, 41(1): 188-199.
|
|
Xiao J, Li S H, He X Z, et al. Semi-supervised ensemble based on metacost model for customer churn prediction[J]. Systems Engineering-Theory & Practice, 2021, 41(1): 188-199.
|
| [31] |
吴俊杰, 刘冠男, 王静远, 等. 数据智能: 趋势与挑战[J]. 系统工程理论与实践, 2020, 40(8): 2116-2149.
|
|
Wu J J, Liu G N, Wang J Y, et al. Data intelligence: Trends and challenges[J]. Systems Engineering-Theory & Practice, 2020, 40(8): 2116-2149.
|
| [32] |
鄢澜, 李思涵, 肖毅, 等. 基于Metacost的客户信用评估半监督异构集成模型研究[J]. 中国管理科学, 2022, 30(12): 211-221.
|
|
Yan L, Li S H, Xiao Y, et al. Metacost based semi-supervised heterogeneous ensemble model for customer credit scoring[J]. Chinese Journal of Management Science, 2022, 30(12): 211-221.
|
| [33] |
Yang C H, Chang P Y. Forecasting the demand for container throughput using a mixed-precision neural architecture based on CNN-LSTM[J]. Mathematics, 2020, 8(10): 1784.
|
| [34] |
肖进, 文章, 刘博, 等. 基于选择性深度集成的集装箱吞吐量混合预测模型研究[J]. 系统工程理论与实践, 2022, 42(4): 1107-1128.
|
|
Xiao J, Wen Z, Liu B, et al. A hybrid model based on selective deep-ensemble for container throughput forecasting[J]. Systems Engineering-Theory & Practice, 2022, 42(4): 1107-1128.
|
| [35] |
Dave E, Leonardo A, Jeanice M, et al. Forecasting Indonesia exports using a hybrid model ARIMA-LSTM[J]. Procedia Computer Science, 2021, 179: 480-487.
|
| [36] |
Lian J, Liu Z, Wang H, et al. Adaptive variational mode decomposition method for signal processing based on mode characteristic[J]. Mechanical Systems and Signal Processing, 2018, 107: 53-77.
|
| [37] |
Yang Y, Hong W, Li S. Deep ensemble learning based probabilistic load forecasting in smart grids[J]. Energy, 2019, 189: 116324.
|
| [38] |
Xiao J, Zhou X, Zhong Y, et al. Cost-sensitive semi-supervised selective ensemble model for customer credit scoring[J]. Knowledge-Based Systems, 2020, 189: 105118.
|
| [39] |
Buryan P, Onwubolu G C. Design of enhanced MIA-GMDH learning networks[J]. International Journal of Systems Science, 2011, 42(4): 673-693.
|
| [40] |
Dragomiretskiy K, Zosso D. Variational mode decomposition[J]. IEEE Transactions on Signal Processing, 2014, 62(3): 531-544.
|
| [41] |
张丰婷, 杨菊花, 任金荟, 等. 基于优化变分模态分解和核极限学习机的集装箱吞吐量预测[J]. 计算机应用, 2022, 42(8): 2333-2342.
|
|
Zhang F T, Yang J H, Ren J H, et al. Container throughput prediction based on optimal variational mode decomposition and kernel extreme learning machine[J]. Journal of Computer Applications, 2022, 42(8): 2333-2342.
|
| [42] |
罗宏远, 王德运, 刘艳玲, 等. 基于二层分解技术和改进极限学习机模型的PM2.5浓度预测研究[J]. 系统工程理论与实践, 2018, 38(5): 1321-1330.
|
|
Luo H Y, Wang D Y, Liu Y L, et al. PM2.5 concentration forecasting based on two-layer decomposition technique and improved extreme learning machine[J]. Systems Engineering-Theory & Practice, 2018, 38(5): 1321-1330.
|
| [43] |
Lv L, Wang W, Zhang Z, et al. A novel intrusion detection system based on an optimal hybrid kernel extreme learning machine[J]. Knowledge-Based Systems, 2020, 195: 105648.
|
| [44] |
Ding S, Zhang N, Zhang J, et al. Unsupervised extreme learning machine with representational features[J]. International Journal of Machine Learning and Cybernetics, 2017, 8(2): 587-595..
|
| [45] |
Ismail Fawaz H, Forestier G, Weber J, et al. Deep learning for time series classification: A review[J]. Data Mining and Knowledge Discovery, 2019, 33(4): 917-963.
|
| [46] |
Li J, Xi B, Du Q, et al. Deep kernel extreme-learning machine for the spectral-spatial classification of hyperspectral imagery[J]. Remote Sensing, 2018, 10(12): 2036.
|
| [47] |
颜学龙, 马润平. 基于深度极限学习机的模拟电路故障诊断[J].计算机工程与科学,2019,41(11): 1911-1918.
|
|
Yan X L, Ma R P. Fault diagnosis of analog circuits based on deep extreme learning machine[J]. Computer Engineering & Science, 2019, 41(11): 1911-1918.
|
| [48] |
Xiao J, Jia Y, Jiang X, et al. Circular complex-valued GMDH-type neural network for real-valued classification problems[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(12): 5285-5299.
|
| [49] |
肖进, 孙海燕, 刘敦虎, 等. 基于GMDH混合模型的能源消费量预测研究[J]. 中国管理科学, 2017, 25(12): 158-166.
|
|
Xiao J, Sun H Y, Liu D H, et al. GMDH based hybrid model for China’s energy consumption prediction[J]. Chinese Journal of Management Science, 2017, 25(12): 158-166.
|
| [50] |
Onwubolu G C. GMDH-Methodology and Implementation in MATLAB[M]. London: World Scientific, 2016.
|
| [51] |
Li X, Ma X, Xiao F, et al. Time-series production forecasting method based on the integration of Bidirectional Gated Recurrent Unit (Bi-GRU) network and Sparrow Search Algorithm (SSA)[J]. Journal of Petroleum Science and Engineering, 2022, 208: 109309.
|
| [52] |
Shankar S, Ilavarasan P V, Punia S, et al. Forecasting container throughput with long short-term memory networks[J]. Industrial Management & Data Systems, 2019, 120(3): 425-441.
|
| [53] |
Xi B, Li J, Li Y, et al. Multiscale context-aware ensemble deep KELM for efficient hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(6): 5114-5130.
|