主管:中国科学院
主办:中国优选法统筹法与经济数学研究会
   中国科学院科技战略咨询研究院

中国管理科学 ›› 2026, Vol. 34 ›› Issue (2): 41-55.doi: 10.16381/j.cnki.issn1003-207x.2024.1767cstr: 32146.14.j.cnki.issn1003-207x.2024.1767

• • 上一篇    下一篇

复杂数据驱动下的质量检测、监测与运维技术研究综述

高园园, 洪铦栋, 陶宝平, 欧阳林寒()   

  1. 南京航空航天大学经济与管理学院,江苏 南京 211106
  • 收稿日期:2024-10-03 修回日期:2025-01-10 出版日期:2026-02-25 发布日期:2026-02-04
  • 通讯作者: 欧阳林寒 E-mail:ouyang@nuaa.edu.cn
  • 基金资助:
    国家自然科学基金项目(72401130);国家自然科学基金项目(72471112);国家自然科学基金项目(72072089);江苏省基础研究计划自然科学基金项目(BK20241397)

Review of Quality Detection, Monitoring, Operation and Maintenance Technology Driven by Complex Data

Yuanyuan Gao, Xiandong Hong, Baoping Tao, Linhan Ouyang()   

  1. College of Economics and Management,Nanjing University of Aeronautics and Astronautics,Nanjing 211106,China
  • Received:2024-10-03 Revised:2025-01-10 Online:2026-02-25 Published:2026-02-04
  • Contact: Linhan Ouyang E-mail:ouyang@nuaa.edu.cn

摘要:

在制造业领域,产品质量管理是企业核心竞争力构建的关键环节。传统的质量管理手段先后关注结果质量、过程质量、全流程质量的相关方法。然而,随着21世纪后全球互联网的深度发展,以智能化、自动化为特色的“智能+”信息化技术开辟了质量管理技术新阶段,因此,数据成为了新时代质量管理的基础,贯穿于产品从设计到退役的全生命周期之中。数据的表现形式多样,涵盖了文本记录、数值指标、图像分析、视频监控等多元化形态,不仅促使数据收集手段需不断创新与丰富,以满足多样化的数据捕获需求,同时也对数据分析理论的深度、模型的适用性提出了更为严苛的要求。然而,数据的不平衡、多源异构等复杂特性为质量管理新技术的应用带来了挑战。在此背景下,本文聚焦于制造业产品生产过程,以检测、监测、运维为导向,探究了复杂数据在制造业产品生产质量管理中的前沿技术,并总结了现有挑战,展望了未来研究的发展趋势。

关键词: 复杂数据, 质量管理, 质量检测, 质量监测, 运维管理

Abstract:

In the field of manufacturing, quality management plays a critical role in enhancing companies' core competitiveness. Traditional approaches to quality management have rapidly evolved, transitioning from an emphasis on quality inspection to quality monitoring, and ultimately to full life-cycle quality management. However, with the rapid development of the global Internet in the 21st century, "smart+" technologies, characterized by intelligence and automation, have ushered in a new era of quality management techniques. Consequently, data has emerged as the cornerstone of modern quality management across every stage of the product life cycle. Data manifests in diverse forms, including text, numeric, images, video, and other formats. This diversity not only promotes the continuous innovation and data collection methods, but also imposes higher demands on the theoretical depth of data analysis and the applicability of analytical models. Complex data characteristics, such as data imbalance and multi-source heterogeneity, pose significant challenges to the quality management technologies. In this context, it focuses on the process of manufacturing, with a focus on quality inspection, monitoring, and operations and maintenance (O&M). It summarizes the cutting-edge technologies that address complex data in quality management and provides insights into prospective research directions in this field.

Key words: complex data, quality management, quality inspection, quality monitoring, operation and maintenance management

中图分类号: