中国管理科学 ›› 2026, Vol. 34 ›› Issue (2): 41-55.doi: 10.16381/j.cnki.issn1003-207x.2024.1767cstr: 32146.14.j.cnki.issn1003-207x.2024.1767
收稿日期:2024-10-03
修回日期:2025-01-10
出版日期:2026-02-25
发布日期:2026-02-04
通讯作者:
欧阳林寒
E-mail:ouyang@nuaa.edu.cn
基金资助:
Yuanyuan Gao, Xiandong Hong, Baoping Tao, Linhan Ouyang(
)
Received:2024-10-03
Revised:2025-01-10
Online:2026-02-25
Published:2026-02-04
Contact:
Linhan Ouyang
E-mail:ouyang@nuaa.edu.cn
摘要:
在制造业领域,产品质量管理是企业核心竞争力构建的关键环节。传统的质量管理手段先后关注结果质量、过程质量、全流程质量的相关方法。然而,随着21世纪后全球互联网的深度发展,以智能化、自动化为特色的“智能+”信息化技术开辟了质量管理技术新阶段,因此,数据成为了新时代质量管理的基础,贯穿于产品从设计到退役的全生命周期之中。数据的表现形式多样,涵盖了文本记录、数值指标、图像分析、视频监控等多元化形态,不仅促使数据收集手段需不断创新与丰富,以满足多样化的数据捕获需求,同时也对数据分析理论的深度、模型的适用性提出了更为严苛的要求。然而,数据的不平衡、多源异构等复杂特性为质量管理新技术的应用带来了挑战。在此背景下,本文聚焦于制造业产品生产过程,以检测、监测、运维为导向,探究了复杂数据在制造业产品生产质量管理中的前沿技术,并总结了现有挑战,展望了未来研究的发展趋势。
中图分类号:
高园园,洪铦栋,陶宝平, 等. 复杂数据驱动下的质量检测、监测与运维技术研究综述[J]. 中国管理科学, 2026, 34(2): 41-55.
Yuanyuan Gao,Xiandong Hong,Baoping Tao, et al. Review of Quality Detection, Monitoring, Operation and Maintenance Technology Driven by Complex Data[J]. Chinese Journal of Management Science, 2026, 34(2): 41-55.
| [1] | 中共中央, 国务院. 质量强国建设纲要[N]. 人民日报, 2023-02-07(1). |
| Central Committee of the Communist Party of China, Council State. Outline for building a quality-powered nation [N]. People's Daily, 2023-02-07(1). | |
| [2] | 工业和信息化部科技司. 夯实“中国制造”的质量基础[N]. 中国电子报, 2023-12-26(2). |
| Department of Science and Technology, Ministry of Industry and Information Technology. Strengthening the quality foundation of “Made in China” [N]. China Electronics News, 2023-12-26(2). | |
| [3] | Gaw N, Yousefi S, Gahrooei M R. Multimodal data fusion for systems improvement: A review[J]. IISE Transactions, 2022, 54(11): 1098-1116. |
| [4] | Tsung F, Zhang K, Cheng L, et al. Statistical transfer learning: A review and some extensions to statistical process control[J]. Quality Engineering, 2018, 30(1): 115-128. |
| [5] | Ding Y, Zeng L, Zhou S. Phase I analysis for monitoring nonlinear profiles in manufacturing processes[J]. Journal of Quality Technology, 2006, 38(3): 199-216. |
| [6] | 刘心报, 胡俊迎, 陆少军, 等. 新一代信息技术环境下的全生命周期质量管理[J]. 管理科学学报, 2022, 25(7): 2-11. |
| Liu X B, Hu J Y, Lu S J, et al. The entire life cycle quality management in the new generation of information technology environment[J]. Journal of Management Sciences in China, 2022, 25(7): 2-11. | |
| [7] | Sony M, Antony J, Douglas J A. Essential ingredients for the implementation of Quality 4.0: A narrative review of literature and future directions for research[J]. The TQM Journal, 2020, 32(4): 779-793. |
| [8] | Antony J, McDermott O, Sony M. Quality 4.0 conceptualisation and theoretical understanding: A global exploratory qualitative study[J]. The TQM Journal, 2022, 34(5): 1169-1188. |
| [9] | 工业和信息化部科技司. 全面强化质量管理数字化能力 加快推动制造业高质量发展[N]. 中国电子报, 2022-01-14(6). |
| Department of Science and Technology,Ministry of Industry and Information Technology. Comprehensively strengthening the digitization capability in quality management to accelerate the high-quality development for manufacturing industries[N]. China Electronics News, 2022-01-14(6). | |
| [10] | Avola D, Cascio M, Cinque L, et al. Real-time deep learning method for automated detection and localization of structural defects in manufactured products[J]. Computers & Industrial Engineering, 2022, 172: 108512. |
| [11] | Baek J, Jeong M K, Elsayed E A. Residual-based surface segmentation for monitoring topographic variations[J]. IEEE Transactions on Automation Science and Engineering, 2022, 19(1): 280-294. |
| [12] | Manivannan S. Collaborative deep semi-supervised learning with knowledge distillation for surface defect classification[J]. Computers & Industrial Engineering, 2023, 186: 109766. |
| [13] | 林时雨, 闫雪娇, 谢哲, 等. 基于时间序列及邻域分析的管道点云障碍物检测[J]. 激光与光电子学进展, 2022, 59(22): 2210007. |
| Lin S Y, Yan X J, Xie Z, et al. Obstacle detection for a pipeline point cloud based on time series and neighborhood analysis[J]. Laser & Optoelectronics Progress, 2022, 59(22): 2210007. | |
| [14] | Wang F, Song G, Mao J, et al. Internal defect detection of overhead aluminum conductor composite core transmission lines with an inspection robot and computer vision[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 3512516. |
| [15] | Wang J, Li G, Bai H, et al. A hybrid deep learning-based framework for chip packaging fault diagnostics in X-ray images[J]. IEEE Transactions on Industrial Informatics, 2024, 20(9): 11181-11191. |
| [16] | Arcos Jiménez A, Gómez Muñoz C Q, García Márquez F P. Dirt and mud detection and diagnosis on a wind turbine blade employing guided waves and supervised learning classifiers[J]. Reliability Engineering & System Safety, 2019, 184: 2-12. |
| [17] | Chabot A, Laroche N, Carcreff E, et al. Towards defect monitoring for metallic additive manufacturing components using phased array ultrasonic testing[J]. Journal of Intelligent Manufacturing, 2020, 31(5): 1191-1201. |
| [18] | Ding L, Lu Q, Liu S, et al. Quality inspection of micro solder joints in laser spot welding by laser ultrasonic method[J]. Ultrasonics, 2022, 118: 106567. |
| [19] | Li Y, Li R. Research on construction method of knowledge graph-based on mobile phone quality detection[C]// Proceedings of 2020 IEEE 5th Information Technology and Mechatronics Engineering Conference (ITOEC), Chongqing, China, June 12-14, IEEE, 2020: 695-699. |
| [20] | Li Q, Yang B, Wang S, et al. A fine-grained flexible graph convolution network for visual inspection of resistance spot welds using cross-domain features[J]. Journal of Manufacturing Processes, 2022, 78: 319-329. |
| [21] | Fan C L. Defect risk assessment using a hybrid machine learning method[J]. Journal of Construction Engineering and Management, 2020, 146(9): 04020102. |
| [22] | Yang Y, Chen X. Crowdsourced test report prioritization based on text classification[J]. IEEE Access, 2022, 10: 92692-92705. |
| [23] | Mohandas R, Mongan P, Hayes M. Ultrasonic weld quality inspection involving strength prediction and defect detection in data-constrained training environments[J]. Sensors, 2024, 24(20): 6553. |
| [24] | Mosca N, Renò V, Nitti M, et al. Post assembly quality inspection using multimodal sensing in aircraft manufacturing[C]//Multimodal Sensing and Artificial Intelligence: Technologies and Applications II, Germany, June 21-26 , SPIE, 2021: 2594104. |
| [25] | Chheang V, Narain S, Hooten G, et al. Enabling additive manufacturing part inspection of digital twins via collaborative virtual reality[J]. Scientific Reports, 2024, 14: 29783. |
| [26] | Gao Y, Feng Y, Ji S, et al. HGNN: General hypergraph neural networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(3): 3181-3199. |
| [27] | 封晓斌, 汤易兵, 吴增源, 等. 基于SRFML-Lift的流程制造产品质量状态监测[J]. 中国管理科学, 2021, 29(12): 227-236. |
| Feng X B, Tang Y B, Wu Z Y, et al. Process manufacturing product quality status monitoring based on SRFML-lift[J]. Chinese Journal of Management Science, 2021, 29(12): 227-236. | |
| [28] | Xu R, Huang S, Song Z, et al. A deep mixed-effects modeling approach for real-time monitoring of metal additive manufacturing process[J]. IISE Transactions, 2024, 56(9): 945-959. |
| [29] | Lu Y, Wang Y. An efficient transient temperature monitoring of fused filament fabrication process with physics-based compressive sensing[J]. IISE Transactions, 2019, 51(2): 168-180. |
| [30] | Zhang Z, Sahu C K, Singh S K, et al. Machine learning based prediction of melt pool morphology in a laser-based powder bed fusion additive manufacturing process[J]. International Journal of Production Research, 2024, 62(5): 1803-1817. |
| [31] | Wang R, Zhang L, Chen N. Spatial correlated data monitoring in semiconductor manufacturing using Gaussian process model[J]. IEEE Transactions on Semiconductor Manufacturing, 2019, 32(1): 104-111. |
| [32] | 韩云霞, 马义中, 欧阳林寒, 等. 高质量低成本视角下的参数和容差整合设计[J]. 中国管理科学, 2024, 32(8): 159-170. |
| Han Y X, Ma Y Z, Ouyang L H, et al. Integrated design of parameters and tolerances under high-quality and low-cost perspective[J]. Chinese Journal of Management Science, 2024, 32(8): 159-170. | |
| [33] | Wu D, Chen H, Huang Y, et al. Online monitoring and model-free adaptive control of weld penetration in VPPAW based on extreme learning machine[J]. IEEE Transactions on Industrial Informatics, 2019, 15(5): 2732-2740. |
| [34] | Shui H, Jin X, Ni J. Twofold variation propagation modeling and analysis for roll-to-roll manufacturing systems[J]. IEEE Transactions on Automation Science and Engineering, 2019, 16(2): 599-612. |
| [35] | 王鸿鹭, 蒋炜, 魏来, 等. 基于物联网的产品全生命周期质量管理的模式创新与展望[J]. 系统工程理论与实践, 2021, 41(2): 475-482. |
| Wang H L, Jiang W, Wei L, et al. Product lifecycle quality management based on the Internet of Things: Business model innovation and future outlook[J]. Systems Engineering-Theory & Practice, 2021, 41(2): 475-482. | |
| [36] | Aminzadeh M, Kurfess T R. Online quality inspection using Bayesian classification in powder-bed additive manufacturing from high-resolution visual camera images[J]. Journal of Intelligent Manufacturing, 2019, 30(6): 2505-2523. |
| [37] | Zhang Y, Soon H G, Ye D, et al. Powder-bed fusion process monitoring by machine vision with hybrid convolutional neural networks[J]. IEEE Transactions on Industrial Informatics, 2020, 16(9): 5769-5779. |
| [38] | Mojahed Yazdi R, Imani F, Yang H. A hybrid deep learning model of process-build interactions in additive manufacturing[J]. Journal of Manufacturing Systems, 2020, 57: 460-468. |
| [39] | Yin M, Zhuo S, Xie L, et al. Online monitoring of local defects in robotic laser additive manufacturing process based on a dynamic mapping strategy and multibranch fusion convolutional neural network[J]. Journal of Manufacturing Systems, 2023, 71: 494-503. |
| [40] | Hong Y, Yang M, Jiang Y, et al. Real-time quality monitoring of ultrathin sheets edge welding based on microvision sensing and SOCIFS-SVM[J]. IEEE Transactions on Industrial Informatics, 2023, 19(4): 5506-5516. |
| [41] | Guo S, Chen M, Abolhassani A, et al. Identifying manufacturing operational conditions by physics-based feature extraction and ensemble clustering[J]. Journal of Manufacturing Systems, 2021, 60: 162-175. |
| [42] | Hong Y, He X, Xu J, et al. AF-FTTSnet: An end-to-end two-stream convolutional neural network for online quality monitoring of robotic welding[J]. Journal of Manufacturing Systems, 2024, 74: 422-434. |
| [43] | Zhou Y, Chang B, Zou H, et al. Online visual monitoring method for liquid rocket engine nozzle welding based on a multi-task deep learning model[J]. Journal of Manufacturing Systems, 2023, 68: 1-11. |
| [44] | Wang Z, Iquebal A S, Bukkapatnam S T S. A vision-based monitoring approach for real-time control of laser origami cybermanufacturing processes[J]. Procedia Manufacturing, 2018, 26: 1307-1317. |
| [45] | Segura L J, Wang T, Zhou C, et al. Online droplet anomaly detection from streaming videos in inkjet printing[J]. Additive Manufacturing, 2021, 38: 101835. |
| [46] | Bugatti M, Colosimo B M. Towards real-time in situ monitoring of hot-spot defects in L-PBF: A new classification-based method for fast video-imaging data analysis[J]. Journal of Intelligent Manufacturing, 2022, 33(1): 293-309. |
| [47] | Yan H, Grasso M, Paynabar K, et al. Real-time detection of clustered events in video-imaging data with applications to additive manufacturing[J]. IISE Transactions, 2022, 54(5): 464-480. |
| [48] | Yoder S, Morgan S, Kinzy C, et al. Characterization of topology optimized Ti-6Al-4V components using electron beam powder bed fusion[J]. Additive Manufacturing, 2018, 19: 184-196. |
| [49] | Nagy Z, Werner-Stark Á, Dulai T. An industrial application using process mining to reduce the number of faulty products[C]//Proceedings of European Conference on Advances in Databases and Information Systems(ADBIS),Budapest, Hungary, September 2-5 ,Springer International Publishing, 2018: 352-363. |
| [50] | Du Y. Introducing the visual imaging feature to the text analysis: High efficient soft computing models with Bayesian network[J]. Neural Processing Letters, 2021, 53(4): 2403-2419. |
| [51] | Luftensteiner S, Praher P. Log file anomaly detection based on process mining graphs[C]//Proceedings of 2022 International Conference on Database and Expert Systems Applications (DEXA), Vienna, Austria, August 22-24 , Cham: Springer International Publishing, 2022: 383-391. |
| [52] | Rao P K, Liu J P, Roberson D, et al. Online real-time quality monitoring in additive manufacturing processes using heterogeneous sensors[J]. Journal of Manufacturing Science and Engineering, 2015, 137(6): 061007. |
| [53] | Vandone A, Baraldo S, Valente A. Multisensor data fusion for additive manufacturing process control[J]. IEEE Robotics and Automation Letters, 2018, 3(4): 3279-3284. |
| [54] | Akhavan J, Manoochehri S. Sensory data fusion using machine learning methods for in situ defect registration in additive manufacturing: A review[C]//Proceedings of 2022 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS), Toronto, ON, Canada, June 1-4, IEEE, 2022: 1-10. |
| [55] | Bevans B, Barrett C, Spears T, et al. Heterogeneous sensor data fusion for multiscale, shape agnostic flaw detection in laser powder bed fusion additive manufacturing[J]. Virtual and Physical Prototyping, 2023, 18(1): e2196266. |
| [56] | 刘丽君, 马义中, 欧阳林寒. 高效的因子分类筛选方法及仿真应用[J]. 系统管理学报, 2021, 30(1): 3-13. |
| Liu L J, Ma Y Z, Ouyang L H. An efficient factor screening and classification procedure based on multi-response sequential bifurcation and applications[J]. Journal of Systems & Management, 2021, 30(1): 3-13. | |
| [57] | 汪建均, 屠雅楠, 马义中. 结合SUR与因子效应原则的多响应质量设计[J]. 管理科学学报, 2020, 23(12): 12-29. |
| Wang J J, Tu Y N, Ma Y Z. Multi-response quality design integrating SUR models with factorial effect principles[J]. Journal of Management Sciences in China, 2020, 23(12): 12-29. | |
| [58] | Zhong S, Liu D, Lin L, et al. CAE-WANN: A novel anomaly detection method for gas turbines via search space extension[J]. Quality and Reliability Engineering International, 2022, 38(6): 3116-3134. |
| [59] | An B, Wang S, Qin F, et al. Adversarial algorithm unrolling network for interpretable mechanical anomaly detection[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35(5): 6007-6020. |
| [60] | Li W, Li C, Wang N, et al. Energy saving design optimization of CNC machine tool feed system: A data-model hybrid driven approach[J]. IEEE Transactions on Automation Science and Engineering, 2022, 19(4): 3809-3820. |
| [61] | Li J Q, Du Y, Gao K Z, et al. A hybrid iterated greedy algorithm for a crane transportation flexible job shop problem[J]. IEEE Transactions on Automation Science and Engineering, 2022, 19(3): 2153-2170. |
| [62] | 刘虎沉, 王鹤鸣, 施华. 智能质量管理: 理论模型、关键技术与研究展望[J]. 中国管理科学, 2024, 32(3): 287-298. |
| Liu H C, Wang H M, Shi H. Intelligent quality management: Theoretical framework, key technologies, and research prospect[J]. Chinese Journal of Management Science, 2024, 32(3): 287-298. | |
| [63] | Annear L M, Akhavan-Tabatabaei R, Schmid V. Dynamic assignment of a multi-skilled workforce in job shops: An approximate dynamic programming approach[J]. European Journal of Operational Research, 2023, 306(3): 1109-1125. |
| [64] | Dolgui A, Kovalev S, Kovalyov M Y, et al. Optimal workforce assignment to operations of a paced assembly line[J]. European Journal of Operational Research, 2018, 264(1): 200-211. |
| [65] | Giannini F, Lupinetti K, Monti M, et al. A customizable VR system supporting industrial equipment operator training[J]. Computer-Aided Design and Applications, 2022: 716-730. |
| [66] | Ciccarelli M, Papetti A, Cappelletti F, et al. Combining World Class Manufacturing system and Industry 4.0 technologies to design ergonomic manufacturing equipment[J]. International Journal on Interactive Design and Manufacturing (IJIDeM), 2022, 16(1): 263-279. |
| [67] | 李岸达, 何桢, 何曙光. 基于NSGA-Ⅱ的非平衡制造数据关键质量特性识别[J]. 系统工程理论与实践, 2016, 36(6): 1472-1479. |
| Li A D, He Z, He S G. Critical to quality characteristics identification for imbalanced production data based on NSGA-Ⅱ[J]. Systems Engineering-Theory & Practice, 2016, 36(6): 1472-1479. | |
| [68] | Zhang Q, Qi J, Zhang X. Analysis of the application of RCM maintenance ideas in the operation and maintenance of air traffic control equipment in high altitude airports[J]. IET Conference Proceedings, 2023, 2023(9): 482-489. |
| [69] | Ghosh R, Seri P, Montanari G C. Condition assessment of electrical equipment in harsh electrical environment[C]//Proceedings of 2019 IEEE 4th International Conference on Condition Assessment Techniques in Electrical Systems (CATCON), Chennai, India, November 21-23, IEEE, 2019: 1-6. |
| [70] | Nie W, Cha X, Bao Q, et al. Study on dust pollution suppression of mine wind-assisted spray device based on orthogonal test and CFD simulation[J]. Energy, 2023, 263: 125590. |
| [71] | Evans P, Sandvig J, Churchill J, et al. Continuous measurement of methane emissions from turbines and compressors using predictive emissions monitoring (PEMS) technology-new insights from a global deployment programme[C]//Proceedings of SPE International Health, Safety, Environment and Sustainability Conference and Exhibition, DhabiAbu, UAE, September 10-12 , Richardson: Society of Petroleum Engineers, 2024: SPE 220445-MS. |
| [72] | 欧阳林寒, 陶宝平, 马妍. 基于选择性集成核高斯过程模型的质量预测研究[J]. 中国管理科学, 2023, 31(3): 69-80. |
| Ouyang L H, Tao B P, Ma Y. Research on quality prediction based on Gaussian process model with selective ensemble kernel[J]. Chinese Journal of Management Science, 2023, 31(3): 69-80. | |
| [73] | Qi F Q, Wang Y K, Huang H Z. Optimal maintenance policy considering imperfect switching for a multi-state warm standby system[J]. Quality and Reliability Engineering International, 2024, 40(5): 2423-2443. |
| [74] | Schouten T N, Dekker R, Hekimoğlu M, et al. Maintenance optimization for a single wind turbine component under time-varying costs[J]. European Journal of Operational Research, 2022, 300(3): 979-991. |
| [75] | 翟翠红, 汪建均, 马义中, 等. 基于高斯过程模型的时空响应稳健参数设计[J]. 系统工程理论与实践, 2023, 43(2): 537-555. |
| Zhai C H, Wang J J, Ma Y Z, et al. Spatio-temporal response robust parameter design based on Gaussian process model[J]. Systems Engineering —Theory & Practice, 2023, 43(2): 537-555. | |
| [76] | Zhang Z, Wang H, Chen H, et al. A novel IEPE AE-vibration-temperature-combined intelligent sensor for defect detection of power equipment[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 9506809. |
| [77] | Kohtz S, Zhao J, Renteria A, et al. Optimal sensor placement for permanent magnet synchronous motor condition monitoring using a digital twin-assisted fault diagnosis approach[J]. Reliability Engineering & System Safety, 2024, 242: 109714. |
| [78] | Dalle Pezze D, Masiero C, Tosato D, et al. FORMULA: A deep learning approach for rare alarms predictions in industrial equipment[J]. IEEE Transactions on Automation Science and Engineering, 2022, 19(3): 1491-1502. |
| [79] | Liu S, Fan L. An adaptive prediction approach for rolling bearing remaining useful life based on multistage model with three-source variability[J]. Reliability Engineering & System Safety, 2022, 218: 108182. |
| [80] | 王宁, 田淑珂, 刘玉敏, 等. 基于PLS-Aenet的多工序制造过程关键质量特性识别[J]. 中国管理科学, 2024, 32(4): 271-278. |
| Wang N, Tian S K, Liu Y M, et al. Identification of key quality characteristics in multistage manufacturing process based on PLS-aenet[J]. Chinese Journal of Management Science, 2024, 32(4): 271-278. | |
| [81] | Li H, Hu G, Li J, et al. Intelligent fault diagnosis for large-scale rotating machines using binarized deep neural networks and random forests[J]. IEEE Transactions on Automation Science and Engineering, 2022, 19(2): 1109-1119. |
| [82] | Wang H, Li Y F. Robust mechanical fault diagnosis with noisy label based on multistage true label distribution learning[J]. IEEE Transactions on Reliability, 2023, 72(3): 975-988. |
| [83] | Xu J, Wang R, Liang Z, et al. Physics-guided, data-refined fault root cause tracing framework for complex electromechanical system[J]. Reliability Engineering & System Safety, 2023, 236: 109293. |
| [84] | Xia L, Zheng P, Herrera M, et al. Graph embedding-based Bayesian network for fault isolation in complex equipment[J]. IEEE Transactions on Reliability, 2025, 74(3): 3897-3910. |
| [85] | Wu C H, Yang D Y, He T E. Matrix-augmentation approach for machine repair problem with generally distributed repair times during working breakdown periods[J]. Mathematics and Computers in Simulation, 2024, 225: 1019-1038. |
| [86] | Gan S, Song Z, Zhang L. A maintenance strategy based on system reliability considering imperfect corrective maintenance and shocks[J]. Computers & Industrial Engineering, 2022, 164: 107886. |
| [87] | Sony M, Antony J, Douglas J A, et al. Motivations, barriers and readiness factors for Quality 4.0 implementation: An exploratory study[J]. The TQM Journal, 2021, 33(6): 1502-1515. |
| [1] | 朱立龙, 徐艳萍. 区块链技术下医药企业质量管理决策Moran分析[J]. 中国管理科学, 2026, 34(2): 185-194. |
| [2] | 刘虎沉,王鹤鸣,施华. 智能质量管理:理论模型、关键技术与研究展望[J]. 中国管理科学, 2024, 32(3): 287-298. |
| [3] | 林强, 马嘉昕, 陈亮君, 林晓刚, 周永务. 考虑成本信息不对称的生鲜电商销售模式选择研究[J]. 中国管理科学, 2023, 31(6): 153-163. |
| [4] | 王宇彬,党延忠,徐照光. 基于质量问题解决的汉语文本数据的因果网络构建方法[J]. 中国管理科学, 2023, 31(10): 254-265. |
| [5] | 封晓斌, 汤易兵, 吴增源, 徐明江. 基于SRFML-Lift的流程制造产品质量状态监测[J]. 中国管理科学, 2021, 29(12): 227-236. |
| [6] | 孙健慧, 张海波, 赵黎明. 三级装备制造业供应链质量管理行为研究[J]. 中国管理科学, 2018, 26(3): 71-83. |
| [7] | 张斌, 华中生. 供应链质量管理中抽样检验决策的非合作博弈分析[J]. 中国管理科学, 2006, (3): 27-31. |
| [8] | 纪延光, 徐启华, 韩之俊. 基于支持向量机的R&D项目过程质量度量[J]. 中国管理科学, 2004, (6): 62-67. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
||