中国管理科学 ›› 2025, Vol. 33 ›› Issue (11): 41-53.doi: 10.16381/j.cnki.issn1003-207x.2023.1947
收稿日期:2023-01-23
修回日期:2024-05-01
出版日期:2025-11-25
发布日期:2025-11-28
通讯作者:
王小越
E-mail:xiaoyue@btbu.edu.cn
基金资助:
Jian Zhou1, Xiaoting Nie1, Kexin Pang1, Xiaoyue Wang2(
), Yizhong Ma1
Received:2023-01-23
Revised:2024-05-01
Online:2025-11-25
Published:2025-11-28
Contact:
Xiaoyue Wang
E-mail:xiaoyue@btbu.edu.cn
摘要:
微电网在提升电力供应韧性和减少温室气体排放等方面展现出了巨大潜力,孤岛型微电网通过互联成为跨区域的多微电网系统,有利于实现微电网的经济性和供电韧性。针对跨区域多微电网系统的扩展规划问题,考虑相邻微电网间的能量互济,将供电韧性和环境效益作为约束,提出以最小化多微电网系统总成本为目标的长期扩展规划框架。基于深度强化学习算法,对此动态、随机决策优化问题给出了求解方法,结合真实数据构造了包含三个区域的多微电网系统,并以此作为算例验证模型的有效性。算例仿真结果表明,针对跨区域多微电网系统的规划框架不仅可提升微电网的供电韧性,而且能够考虑跨区域的微电网结构的影响,适时调整投资规划,选取电力依赖性更高、用途更广泛的区域进行微电网设施的投资,有效解决了跨区域多微电网系统的规划问题。
中图分类号:
周剑,聂孝婷,庞可欣, 等. 基于深度强化学习算法的跨区域多微电网系统扩展规划研究[J]. 中国管理科学, 2025, 33(11): 41-53.
Jian Zhou,Xiaoting Nie,Kexin Pang, et al. Multi-area Multi-Microgrid System Expansion Planning Based on Deep Reinforcement Learning Algorithm[J]. Chinese Journal of Management Science, 2025, 33(11): 41-53.
表1
微电网扩展规划的DDQN算法"
| 算法: 微电网扩展规划的DDQN算法 | |
|---|---|
| 1: | 确定微电网的运行模式 |
| 2: | 初始化: 经验回放缓冲区b和采样批量m的大小 |
| 3: | 初始化:主网络的参数 |
| 4: | for episode = 1 : Num |
| 5: | 初始化微电网环境状态s |
| 6: | for decision period k = 1 : K |
| 7: | 结合ε-greedy策略和表选择动作 |
| 8: | 执行动作a,模拟主电网故障时的备用微电网运行 |
| 9: | 得到奖励r和下一个状态s’ |
| 10 | 将经验存入经验回放缓冲区b |
| 11 | 从经验回放缓冲区b中随机采样批量大小为m的经验 |
| 12: | 目标网络A选择动作,网络B估计目标值: |
| 13: | 利用随机梯度下降 |
| 14: | 每经过C个episodes更新 |
| 15: | 结束for循环 |
| 16: | 结束for循环 |
| [1] | 衣博文, 范英. 高比例可再生能源接入下的电力系统规划研究[J]. 管理科学学报, 2023, 26(10): 21-35. |
| Yi B W, Fan Y. Power system planning with a high share of renewable energy[J]. Journal of Management Sciences in China, 2023, 26(10): 21-35. | |
| [2] | 殷辉, 陆信辉, 周开乐. 分布式与集中式储能并存的微电网负荷优化调度[J]. 中国管理科学, 2023, 31(2): 118-128. |
| Yin H, Lu X H, Zhou K L. Optimal load dispatch for microgrid with distributed and centralized energy storage systems[J]. Chinese Journal of Management Science, 2023, 31(2): 118-128. | |
| [3] | Tsianikas S, Yousefi N, Zhou J, et al. A storage expansion planning framework using reinforcement learning and simulation-based optimization[J]. Applied Energy, 2021, 290: 116778. |
| [4] | 巨云涛, 陈希, 李嘉伟, 等. 基于分布式深度强化学习的微网群有功无功协调优化调度[J]. 电力系统自动化, 2023, 47(1): 115-125. |
| Ju Y T, Chen X, Li J W, et al. Active and reactive power coordinated optimal dispatch of networked microgrids based on distributed deep reinforcement learning[J]. Automation of Electric Power Systems, 2023, 47(1): 115-125. | |
| [5] | 杨家豪. 基于一致性算法的孤岛型微电网群实时协同功率分配[J].电力系统自动化,2017,41(5):8-15+38. |
| Yang J H. Consensus algorithm based real-time collaborative power dispatch for island multi-microgrid[J]. Automation of Electric Power Systems, 2017, 41(5): 8-15+38. | |
| [6] | 高蕾, 龚晶. 基于线性分段恢复函数的基础设施韧性分析模型——以C县电力系统网络为例[J]. 中国管理科学, 2022, 30(12): 86-95. |
| Gao L, Gong J. Analysis model for infrastructure resilience based on linear piecewise recovery function: A case study of C county power network[J]. Chinese Journal of Management Science, 2022, 30(12): 86-95. | |
| [7] | 刘天浩, 朱元振, 孙润稼, 等. 极端自然灾害下电力信息物理系统韧性增强策略[J]. 电力系统自动化, 2021, 45(3): 40-48. |
| Liu T H, Zhu Y Z, Sun R J, et al. Resilience-enhanced strategy for cyber-physical power system under extreme natural disasters[J]. Automation of Electric Power Systems, 2021, 45(3): 40-48. | |
| [8] | 黄文鑫, 吴军, 郭子辉, 等. 台风灾害下电网韧性评估及差异化规划[J].电力系统自动化,2023, 47(5): 84-91. |
| Huang W X, Wu J, Guo Z H, et al. Power grid resilience assessment and differentiated planning against typhoon disasters[J]. Automation of Electric Power Systems, 2023, 47(5): 84-91. | |
| [9] | Ma S, Chen B, Wang Z. Resilience enhancement strategy for distribution systems under extreme weather events[J]. IEEE Transactions on Smart Grid, 2018, 9(2): 1442-1451. |
| [10] | Ashrafi R, Amirahmadi M, Tolou-Askari M, et al. Multi-objective resilience enhancement program in smart grids during extreme weather conditions[J]. International Journal of Electrical Power & Energy Systems, 2021, 129: 106824. |
| [11] | 杜敏, 刘绚, 周元刚. 考虑极端事件下的高比例可再生能源电力系统韧性增强策略[J]. 电力系统自动化, 2023, 47(12): 19-27. |
| Du M, Liu X, Zhou Y G. Resilience enhancement strategy for power system with high proportion of renewable energy considering extreme events[J]. Automation of Electric Power Systems, 2023, 47(12): 19-27. | |
| [12] | Xu Y, Xing Y, Huang Q, et al. A review of resilience enhancement strategies in renewable power system under HILP events[J]. Energy Reports, 2023, 9: 200-209. |
| [13] | Abdelmalak M, Benidris M. Proactive generation redispatch to enhance power system resilience during hurricanes considering unavailability of renewable energy sources[J]. IEEE Transactions on Industry Applications, 2022, 58(3): 3044-3053. |
| [14] | Gilani M A, Kazemi A, Ghasemi M. Distribution system resilience enhancement by microgrid formation considering distributed energy resources[J]. Energy, 2020, 191: 116442. |
| [15] | Yan M, He Y, Shahidehpour M, et al. Coordinated regional-district operation of integrated energy systems for resilience enhancement in natural disasters[J]. IEEE Transactions on Smart Grid, 2019, 10(5): 4881-4892. |
| [16] | Hussain A, Bui V H, Kim H M. Microgrids as a resilience resource and strategies used by microgrids for enhancing resilience[J]. Applied Energy, 2019, 240: 56-72. |
| [17] | Hemmati R, Saboori H, Siano P. Coordinated short-term scheduling and long-term expansion planning in microgrids incorporating renewable energy resources and energy storage systems[J]. Energy, 2017, 134: 699-708. |
| [18] | Mehraban S A, Eslami R. Multi-microgrids energy management in power transmission mode considering different uncertainties[J]. Electric Power Systems Research, 2023, 216: 109071. |
| [19] | Zhong X, Zhong W, Liu Y, et al. Optimal energy management for multi-energy multi-microgrid networks considering carbon emission limitations[J]. Energy, 2022, 246: 123428. |
| [20] | Han D, Lee J H. Two-stage stochastic programming formulation for optimal design and operation of multi-microgrid system using data-based modeling of renewable energy sources[J]. Applied Energy, 2021, 291: 116830. |
| [21] | Pang K, Zhou J, Tsianikas S, et al. Deep reinforcement learning for resilient microgrid expansion planning with multiple energy resource[J]. Quality and Reliability Engineering International, 2024, 40(1): 34-56. |
| [22] | Bukar A L, Tan C W, Yiew L K, et al. A rule-based energy management scheme for long-term optimal capacity planning of grid-independent microgrid optimized by multi-objective grasshopper optimization algorithm[J]. Energy Conversion and Management, 2020, 221: 113161. |
| [23] | Zhou B, Zou J, Chung C Y, et al. Multi-microgrid energy management systems: Architecture, communication, and scheduling strategies[J]. Journal of Modern Power Systems and Clean Energy, 2021, 9(3): 463-476. |
| [24] | Zhang Z, Zhang D, Qiu R C. Deep reinforcement learning for power system applications: An overview[J]. CSEE Journal of Power and Energy Systems, 2020, 6(1): 213-225. |
| [25] | Du Y, Li F. Intelligent multi-microgrid energy management based on deep neural network and model-free reinforcement learning[J]. IEEE Transactions on Smart Grid, 2020, 11(2): 1066-1076. |
| [26] | Yu Y, Cai Z, Liu Y. Double deep Q-learning coordinated control of hybrid energy storage system in island micro-grid[J]. International Journal of Energy Research, 2021, 45(2): 3315-3326. |
| [27] | Remani T, Jasmin E A, Imthias Ahamed T P. Residential load scheduling with renewable generation in the smart grid: A reinforcement learning approach[J]. IEEE Systems Journal, 2019, 13(3): 3283-3294. |
| [28] | Stroe D I, Świerczyński M, Stan A I, et al. Accelerated lifetime testing methodology for lifetime estimation of lithium-ion batteries used in augmented wind power plants[J]. IEEE Transactions on Industry Applications, 2014, 50(6): 4006-4017. |
| [29] | Tsianikas S. Microgrid expansion planning using Simulation-based optimization and reinforcement learning[D].New Brunswick: Rutgers, the State University of New Jersey, School of Graduate Studies, 2020. |
| [30] | US Energy Information Association (EIA). Levelized costs of new generation resources in the annual energy outlook 2022[R].Working Paper, US Energy Information Association, 2022. |
| [31] | Smith K, Saxon A, Keyser M, et al. Life prediction model for grid-connected Li-ion battery energy storage system[C]//2017 American Control Conference (ACC),Seattle, WA, USA, May 24-26, IEEE, 2017: 4062-4068. |
| [32] | Sutton R S, Barto A G. Reinforcement learning: An introduction[J]. IEEE Transactions on Neural Networks, 1998, 9(5): 1054. |
| [33] | Dayan P. Motivated reinforcement learning[M]//Dietterich T G, Becker S, Ghahramani Z. Advances in Neural Information Processing Systems 14. Cambridge: The MIT Press, 2002: 11-18. |
| [34] | Mnih V, Kavukcuoglu K, Silver D, et al. Human-level control through deep reinforcement learning[J]. Nature, 2015, 518(7540): 529-533. |
| [35] | Bui V H, Hussain A, Kim H M. Double deep $Q$-learning-based distributed operation of battery energy storage system considering uncertainties[J]. IEEE Transactions on Smart Grid, 2020, 11(1): 457-469. |
| [36] | Van Hasselt H, Guez A, Silver D. Deep reinforcement learning with double Q-learning[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2016, 30(1): 10295. |
| [37] | US Energy Information Association (EIA). Annual electric power industry report, form EIA-861 detailed data files[R]. Working Paper, US Energy Information Association, 2021. |
| [38] | National Renewable Energy Laboratory (NREL). Commercial and residential hourly load profiles for all TMY3 locations in the United States[R]. Working Paper, National Renewable Energy Laboratory, 2014. |
| [39] | Pang K, Zhou J, Tsianikas S, et al. Deep reinforcement learning based microgrid expansion planning with battery degradation and resilience enhancement[C]//Proceedings of 2021 3rd International Conference on System Reliability and Safety Engineering (SRSE). November 26-28, 2021, Harbin, China. IEEE, 2021: 251-257. |
| [40] | National Renewable Energy Laboratory (NREL). National solar radiation database[R]. Working Paper, National Renewable Energy Laboratory, 2021. |
| [41] | US Energy Information Association (EIA). State electricity profiles[R]. Working Paper,US Energy Information Association, 2021. |
| [42] | Energy Information Association US. Gasoline and diesel fuel update[R]. Working Paper,US Energy Information Association, 2021. |
| [43] | Karimi H, Jadid S. Optimal energy management for multi-microgrid considering demand response programs: A stochastic multi-objective framework[J]. Energy, 2020, 195: 116992. |
| [44] | International Renewable Energy Agency (IRENA). Renewable power generation costs in 2021[R]. Working Paper,International Renewable Energy Agency, 2021. |
| [1] | 陈闻鹤, 常志朋, 周涵婷, 程龙生, 文卜玉. 重大疫情下社区韧性治理能力深度迁移学习评价方法[J]. 中国管理科学, 2025, 33(8): 100-111. |
| [2] | 石大千, 李雪琴, 李丹丹. 智慧供应链建设如何提升企业绩效?——基于供应链韧性优化视角的分析[J]. 中国管理科学, 2025, 33(4): 325-334. |
| [3] | 胡玉真, 刘建霞. 基于消冗时段网络的集装箱班轮干扰恢复研究[J]. 中国管理科学, 2025, 33(2): 118-130. |
| [4] | 朱庆华, 陈宇潇, 陈国玉. 循环供应链管理研究发展与展望[J]. 中国管理科学, 2025, 33(1): 221-231. |
| [5] | 宋洁, 黄静思, 何冠楠, 王剑晓. 水-能源-粮食纽带系统的风险测度与韧性提升研究[J]. 中国管理科学, 2025, 33(1): 323-334. |
| [6] | 吴鹏, 王琦, 霍红, 刘作仪. 韧性城市运营管理:新兴研究热点及其进展[J]. 中国管理科学, 2025, 33(1): 34-51. |
| [7] | 王林,顾生辉,索玮岚. 韧性导向下考虑多重关联的城市关键基础设施防护-修复资源配置研究[J]. 中国管理科学, 2024, 32(6): 301-311. |
| [8] | 戚筱雯, 梁昌勇, 张俊岭. 对偶犹豫非均衡语言群决策模型及其在供应商韧性评价中的应用研究[J]. 中国管理科学, 2024, 32(12): 108-117. |
| [9] | 刘炳胜, 崔巧艳, 王丹, 赵剑锋. 基于公众参与的灾后交通基础设施韧性治理动态博弈模型[J]. 中国管理科学, 2024, 32(11): 189-200. |
| [10] | 黄丽,叶春明,郭鹏. 基于韧性城市视角的突发事件下分布式应急手术调度研究[J]. 中国管理科学, 2024, 32(1): 94-105. |
| [11] | 孙莹,刘慧萍,颜瑞,张群. 基于韧性和社会福利的应急医疗物资供应链均衡优化[J]. 中国管理科学, 2023, 31(8): 132-141. |
| [12] | 殷辉, 陆信辉, 周开乐,. 分布式与集中式储能并存的微电网负荷优化调度[J]. 中国管理科学, 2023, 31(2): 118-128. |
| [13] | 李根,刘欣雨,刘家国,周莹. 产业协同集聚如何影响制造业绿色韧性?[J]. 中国管理科学, 2023, 31(12): 249-260. |
| [14] | 高蕾, 龚晶. 基于线性分段恢复函数的基础设施韧性分析模型——以C县电力系统网络为例[J]. 中国管理科学, 2022, 30(12): 86-95. |
| [15] | 盛昭瀚, 王海燕, 胡志华. 供应链韧性:适应复杂性——基于复杂系统管理视角[J]. 中国管理科学, 2022, 30(11): 1-7. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
||