 
  
	Chinese Journal of Management Science ›› 2022, Vol. 30 ›› Issue (4): 30-41.doi: 10.16381/j.cnki.issn1003-207x.2020.0488
• Articles • Previous Articles Next Articles
LIANG Chao1, WEI Yu2, MA Feng1, LI Xia-fei1
Received:2020-03-24
															
							
																	Revised:2020-05-19
															
							
															
							
																	Online:2022-04-20
															
							
																	Published:2022-04-26
															
						Contact:
								魏宇   
																	E-mail:weiyusy@126.com
																					CLC Number:
LIANG Chao,WEI Yu,MA Feng, et al. Forecasting Volatility of China Gold Futures Price: New Evidence from Model Shrinkage Methods[J]. Chinese Journal of Management Science, 2022, 30(4): 30-41.
| [1] 龚旭, 曹杰, 文凤华, 等. 基于杠杆效应和结构突变的HAR族模型及其对股市波动率的预测研究[J]. 系统工程理论与实践, 2020, 40(5): 1113-1133.Gong Xu, Cao Jie, Wen Fenghua, et al. The HAR-type models with leverage and structural breaks and their applications to the volatility forecasting of stock market[J]. Systems Engineering Theory & Practice, 2020, 40(5): 1113-1133. [2] 郭晨, 吴君民. 我国银行业二元风险混合传染效应研究[J]. 云南财经大学学报, 2019, 35(7): 64-76.Guo Chen, Wu Junmin. Research on the mixed contagion effect of dual risks in China’s banking industry[J]. Journal of Yunnan University of Finance and Economics, 2019, 35(7): 64-76. [3] 杨科, 陈浪南. 股市波动率的短期预测模型和预测精度评价[J]. 管理科学学报, 2012, 15(5): 19-31.Yang Ke, Chen Langnan. Short-term volatility forecast model and its performance evaluation[J]. Journal of Management Sciences in China, 2012, 15(5): 19-31. [4] 徐欣, 徐惟. 银行杠杆、同业业务创新与系统性风险[J]. 云南财经大学学报, 2019, 35(11): 49-58.Xu Xin, Xu Wei. Bank leverage, interbank business innovation and systematic risk[J]. Journal of Yunnan University of Finance and Economics, 2019, 35(11): 49-58. [5] 徐巧玲. 劳动收入、不确定风险与家庭金融资产选择[J]. 云南财经大学学报, 2019, 35(5): 75-86.Xu Qiaoling. Labor Income,Uncertain risks and the selection of family financial assets[J]. Journal of Yunnan University of Finance and Economics, 2019, 35(5): 75-86. [6] 郭彦峰, 肖倬. 中美黄金市场的价格发现和动态条件相关性研究[J]. 国际金融研究, 2009(11): 75-83.Guo Yanfeng,Xiao Zhuo. The study of price discov-ery and dynamic correlation coefficients between the Chinese and American gold markets[J]. Studies of International Finance,2009(11): 75-83. [7] 冯辉, 张蜀林. 国际黄金期货价格决定要素的实证分析[J]. 中国管理科学, 2012, 20(S1): 424-428.Feng Hui, Zhang Shulin. The empirical analysis about the determinants of international gold futures prices[J]. Chinese Journal of Management Science, 2012, 20(S1): 424-428. [8] Liu Sun, Tang Tingfei, McKenzie A M, et al. Low-frequency volatility in China’s gold futures market and its macroeconomic determinants[J]. Mathematical Problems in Engineering, 2015. [9] Smales L A. Commodity market volatility in the presence of US and Chinese macroeconomic news[J]. Journal of Commodity Markets, 2017, 7: 15-27. [10] 刘金娥, 高佳辉. 投资者情绪与黄金期货价格动态关系研究[J]. 价格理论与实践, 2017(9): 80-83.Liu Jiner, Guo Jiahui. Analysis on investor sentiment and gold futures price fluctuation[J]. Price:Theory & Practice, 2017(09): 80-83. [11] Luo Xingguo, Qin Shihua, Ye Zinan. The information content of implied volatility and jumps in forecasting volatility: Evidence from the Shanghai gold futures market[J]. Finance Research Letters, 2016, 19: 105-111. [12] Wei Yu, Liang Chao, Li Yan, et al. Can CBOE gold and silver implied volatility help to forecast gold futures volatility in China? Evidence based on HAR and Ridge regression models[J]. Finance Research Letters, 2020, 35: 101287. [13] Santamaría-Bonfil G, Frausto-Solís J, Vázquez-Rodarte I. Volatility forecasting using support vector regression and a hybrid genetic algorithm[J]. Computational Economics, 2015, 45(1): 111-133. [14] Ma Feng, Liu Jing, Wahab M I M, et al. Forecasting the aggregate oil price volatility in a data-rich environment[J]. Economic Modelling, 2018, 72: 320-332. [15] Zhang Yaojie, Ma Feng, Wang Yudong. Forecasting crude oil prices with a large set of predictors: Can LASSO select powerful predictors?[J]. Journal of Empirical Finance, 2019, 54: 97-117. [16] Rapach D E, Strauss J K, Zhou Guofu. Out-of-sample equity premium prediction: Combination forecasts and links to the real economy[J]. The Review of Financial Studies, 2010, 23(2): 821-862. [17] Andersen T G, Bollerslev T. Answering the skeptics: Yes, standard volatility models do provide accurate forecasts[J]. International economic review, 1998: 885-905. [18] Liu L Y, Patton A J, Sheppard K. Does anything beat 5-minute RV? A comparison of realized measures across multiple asset classes[J]. Journal of Econometrics, 2015, 187(1): 293-311. [19] Tibshirani R. Regression shrinkage and selection via the lasso[J]. Journal of the Royal Statistical Society: Series B (Methodological), 1996, 58(1): 267-288. [20] Zou Hui, Hastie T. Regularization and variable selection via the elastic net[J]. Journal of the royal statistical society: series B (statistical methodology), 2005, 67(2): 301-320. [21] Hansen P R. A test for superior predictive ability[J]. Journal of Business & Economic Statistics, 2005, 23(4): 365-380. [22] Hansen P R, Lunde A, Nason J M. The model confidence set[J]. Econometrica, 2011, 79(2): 453-497. [23] 魏宇, 马锋, 黄登仕. 多分形波动率预测模型及其MCS检验[J]. 管理科学学报, 2015, 18(8): 61-72.Wei Yu, Ma Feng, Huang Dengshi. Multi-fractal volatility forecasting model and its MCS test[J]. Journal of Management Sciences in China, 2015, 18(8): 61-72. [24] 雷立坤, 余江, 魏宇, 等. 经济政策不确定性与我国股市波动率预测研究[J]. 管理科学学报, 2018, 21(6): 88-98.Lei Likun,Yu Jiang,Wei Yu,et al. Forecasting volatility of Chinese stock market with economic policy uncertainty[J]. Journal of Management Sciences in China,2018,21(6): 88-98. [25] Clark T E, West K D. Approximately normal tests for equal predictive accuracy in nested models[J]. Journal of econometrics, 2007, 138(1): 291-311. [26] Degiannakis S, Filis G. Forecasting oil price realized volatility using information channels from other asset classes[J]. Journal of International Money and Finance, 2017, 76: 28-49. [27] Pesaran M H, Timmermann A. A simple nonparametric test of predictive performance[J]. Journal of Business & Economic Statistics, 1992, 10(4): 461-465. | 
| [1] | Pengfei Luo, Yanming Yao, Yingxian Tan. The Principal-agent Problem and Financing Policies under the Public Health Emergencies [J]. Chinese Journal of Management Science, 2025, 33(10): 47-56. | 
| [2] | Yanyi Ye, Xiaoguang Yang. Informed Trading in Stock Market and Credit Spreads in Bond Market [J]. Chinese Journal of Management Science, 2025, 33(9): 1-10. | 
| [3] | Liu Gan, Yingli Cai, Mingyu Xu, Yingxian Tan. Information Acquisition in Secondary Market and Convertible Bond Financing [J]. Chinese Journal of Management Science, 2025, 33(9): 22-32. | 
| [4] | Yinhong Yao, Xiaoxu Wang, Wei Chen, Zhensong Chen. Extreme Risk Spillover among Global Stock Markets Based on Transformer-LSTM Quantile Regression [J]. Chinese Journal of Management Science, 2025, 33(8): 1-13. | 
| [5] | Weiping Wu, Yu Lin, Chengneng Jin, Zhenpeng Tang. Constrained Optimal Risk Sensitive Execution Problem with Stochastic Market Depth [J]. Chinese Journal of Management Science, 2025, 33(8): 14-25. | 
| [6] | Jingzhou Yan, Zhongfei Li, Jie Mao, Xingyi Li. Strategic Trading and Market Quality under Ambiguous Volatility [J]. Chinese Journal of Management Science, 2025, 33(8): 26-36. | 
| [7] | Wei Zhang, Zhuo Chen, Xu Feng, Xiong Xiong, Yongjie Zhang. Financial Systems Engineering in China: 2010-2024 — A Bibliometric Study [J]. Chinese Journal of Management Science, 2025, 33(7): 11-23. | 
| [8] | Jun Tian, Zanqiang Dong, Yali Li. Research on Financing Strategy of Advance Payment Supply Chain [J]. Chinese Journal of Management Science, 2025, 33(7): 272-283. | 
| [9] | Pengfei Luo, Xinle Liu, Ting Lu, Yong Zhang. Merger and Acquisition Decisions for Firm under Carbon Emission Reduction [J]. Chinese Journal of Management Science, 2025, 33(7): 337-345. | 
| [10] | Ke Yang, Xin Liu, Fengping Tian. Cross-Market Contagion of Stock Market's Extreme Risks between China and Other Major Emerging Market Countries [J]. Chinese Journal of Management Science, 2025, 33(7): 44-53. | 
| [11] | Lu Wen, Ling Feng. Interbank Risk Contagion and Effective Bailout Frontier under Dynamic Government Intervention [J]. Chinese Journal of Management Science, 2025, 33(6): 37-48. | 
| [12] | Zisheng Ouyang, Xuewei Zhou. Systemic Risk Backtesting and Connectedness of Chinese Financial Institutions: Evidence from MES and ΔCoVaR [J]. Chinese Journal of Management Science, 2025, 33(6): 14-26. | 
| [13] | Zhiming Zhao, Qiong Pan. The Impact of Debt-Based Incentives on Corporate Refinancing [J]. Chinese Journal of Management Science, 2025, 33(6): 27-36. | 
| [14] | Chunping Tan, Xuezhi Qin, Qin Shang, Wenhua Wang, Xianwei Lin. Incentive Compatible Combined Relief Strategy for Enterprise’ s Financial Distress Based on Perpetual Debt Replacement and Strategic Debt Payment [J]. Chinese Journal of Management Science, 2025, 33(5): 13-25. | 
| [15] | Hui Yu, Shuang Wang. Supply Chain Finance: How can Enterprises Achieve Sustainability? [J]. Chinese Journal of Management Science, 2025, 33(5): 280-289. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||
| 
 | ||