主管:中国科学院
主办:中国优选法统筹法与经济数学研究会
   中国科学院科技战略咨询研究院

区块链技术下政府对可再生能源电力消纳的动态激励补贴研究

  • 孙中苗 ,
  • 徐琪
展开
  • 1.上海海事大学经济管理学院,上海 201306
    2.东华大学旭日工商管理学院,上海 200051
徐琪(1963—),女(汉族),浙江台州人,东华大学旭日工商管理学院,教授,博士生导师,研究方向:电子商务与供应链管理、运营管理,E-mail: xuqi@dhu.edu.cn.

收稿日期: 2022-12-20

  修回日期: 2024-01-10

  网络出版日期: 2025-08-06

基金资助

教育部人文社会科学研究青年基金项目(23YJC630157);国家社会科学基金项目(21BGL014)

Dynamic Incentive Subsidy of Government for Renewable Energy Power Consumption under Blockchain Technology

  • Zhongmiao Sun ,
  • Qi Xu
Expand
  • 1.School of Economics and Management,Shanghai Maritime University,Shanghai 201306,China
    2.Glorious Sun School of Business and Management,Donghua University,Shanghai 200051,China

Received date: 2022-12-20

  Revised date: 2024-01-10

  Online published: 2025-08-06

摘要

可再生能源电力消纳是实现国家“双碳”战略目标的重要途径。针对区块链技术下政府对电力企业的可再生能源电力消纳动态激励问题,考虑区块链技术在智能合约、能源碳通证和市场信息披露上的应用,同时考虑政府的碳交易政策,运用委托-代理理论分别构建政府在无区块链技术、有区块链技术及区块链技术下考虑碳交易时的动态激励补贴模型,并运用最优控制方法对模型进行求解和分析。研究发现:当电力企业的机会成本大于某一临界点而区块链技术的固定成本小于某一临界点时,区块链技术的实施才有助于提高政府效益;而当电力企业碳减排量的临界值和区块链技术的单位运作成本均较小时,政府在区块链技术下启动碳交易市场才有利。通过数值仿真发现当电力企业的碳减排转化率较高时,政府适当地提高碳交易市场价格是有利的。研究结论可为区块链技术下政府对电力企业的可再生能源电力消纳激励补贴提供一定参考。

本文引用格式

孙中苗 , 徐琪 . 区块链技术下政府对可再生能源电力消纳的动态激励补贴研究[J]. 中国管理科学, 2025 , 33(7) : 346 -359 . DOI: 10.16381/j.cnki.issn1003-207x.202.2721

Abstract

Renewable energy power consumption is an important way to achieve the China’s “Carbon Neutrality and Carbon Peaking” strategic goal. However, some regions in China only pursue the scale of wind power installation and economic benefits, ignoring the downstream consumption problem, which affects the sustainable development of the wind power industry. During the 14th Five-Year Plan period, China's new energy will grow substantially, and the average annual new installed capacity may double, and the cumulative installed capacity of new energy will account for 40% in 2030, surpassing coal power to become the largest power source. Therefore, China's renewable energy consumption will face greater pressure and challenges,in this paper, for the government’s dynamic incentive problem for power enterprises' renewable energy power consumption under the blockchain technology. Considering the smart contract, energy carbon token and market information disclosure of the blockchain, as well as the government’s carbon trading policy, and based on the state change of the expected consumption amount of renewable energy, the dynamic incentive subsidy models of the government are constructed by using principal-agent theory, including without blockchain, with blockchain and carbon trading under blockchain. The optimal control method is used to solve the equilibrium solution between the government and power enterprises in different situations, and the optimal dynamic trajectory change law of government incentive strategies are revealed, and the effects of relevant parameters, blockchain technology, and carbon trading policy are analyzed.The results suggest that (1) Only when the opportunity cost of power enterprises is greater than a certain critical point and the fixed cost of blockchain is less than a certain critical point, the implementation of blockchain can help to improve the benefit of the government. (2) Only when the critical value of carbon emission reduction of power enterprises and the unit operation cost of blockchain are small, it is beneficial for the government to start the carbon trading market under the blockchain technology. (3) Under the government's dynamic incentive subsidy, the optimal dynamic trajectory of the expected consumption amount of renewable energy in different scenarios will increase monotonically over time and then tend to a steady state. (4) Finally, the numerical simulation shows that when the conversion rate of carbon emission reduction of power enterprises is relatively high, it is beneficial for the government to regulate and appropriately increase the carbon trading market price. The results provide good insights for the government to design the renewable energy power consumption incentive subsidy for power enterprises under the blockchain technology.

参考文献

[1] 许书琴, 徐琪. 能源平台供应链可再生能源电力消纳激励契约研究[J].中国管理科学202333(3):326-338.
  Xu S Q, Xu Q. Incentive contract of renewable energy power consumption in energy platform supply chain[J]. Chinese Journal of Management Science202333(3):326-338.
[2] Peura H, Bunn D W. Renewable power and electricity prices: The impact of forward markets[J]. Management Science202167(8): 4772-4788.
[3] 戴道明, 王忆都. 可再生能源消纳责任权重制下光伏供应链合作与运营决策[J]. 中国管理科学2024, DOI: 10.16381/j.cnki.issn1003-207x.2023.1019 .
  Dai D M, Wang Y D. Photovoltaic supply chain cooperation and operational decision under renewable portfolio standard[J]. Chinese Journal of Management Science2024, DOI: 10.16381/j.cnki.issn1003-207x.2023.1019 .
[4] Xue C, Shahbaz M, Ahmed Z, et al. Clean energy consumption, economic growth, and environmental sustainability: What is the role of economic policy uncertainty?[J]. Renewable Energy2022184(1): 899-907.
[5] Xia L, Ren Y, Wang Y, et al. Forecasting China’s renewable energy consumption using a novel dynamic fractional-order discrete grey multi-power model[J]. Renewable Energy2024233: 121125.
[6] Sahebi I G, Mosayebi A, Masoomi B, et al. Modeling the enablers for blockchain technology adoption in renewable energy supply chain[J]. Technology in Society202268: 101871.
[7] Khare V, Bhatia M.Renewable Energy Trading: Assessment by Blockchain[J]. Cleaner Energy Systems20248: 100119.
[8] Hosseini Dehshiri J, Amiri M, Hosseini Bamakan S M. Evaluating the blockchain technology strategies for reducing renewable energy development risks using a novel integrated decision framework[J]. Energy2024289: 129987.
[9] Guo S M, Feng T. Blockchain-based smart trading mechanism for renewable energy power consumption vouchers and green certificates: Platform design and simulation[J]. Applied Energy2024369: 123351.
[10] Liu W J, Chiu W Y, Hua W. Blockchain-enabled renewable energy certificate trading: A secure and privacy-preserving approach[J]. Energy2024290: 130110.
[11] Sahih A Z, Abbasi A, Ghasri M. Blockchain-enabled solutions for fair and efficient peer-to-peer renewable energy trading: An experimental comparison[J].Journal of Cleaner Production2024455: 142301.
[12] Hosseini Dehshiri S J, Amiri M, Mostafaeipour A, et al. Integrating blockchain and strategic alliance in renewable energy supply chain toward sustainability: A comparative decision framework under uncertainty[J]. Energy2024304: 132136.
[13] Yildizbasi A. Blockchain and renewable energy: Integration challenges in circular economy era[J]. Renewable Energy2021176: 183-197.
[14] Abadi M Q H, Sadeghi R, Hajian A, et al. A blockchain-based dynamic energy pricing model for supply chain resiliency using machine learning[J]. Supply Chain Analytics2024(6): 100066.
[15] 赵国涛, 钱国明, 丁泉, 等. 基于区块链的可再生能源消纳激励机制研究[J].华电技术202143(4): 71-77.
  Zhao G T, Qian G M, Ding Q, et al. Study on incentive mechanism of renewable energy consumption based on blockchain[J]. Huadian Technology202143(4): 71-77.
[16] 张显, 冯景丽, 常新, 等. 基于区块链技术的绿色电力交易系统设计及应用[J]. 电力系统自动化202246(9): 1-10.
  Zhang X, Feng J L, Chang X, et al. Design and application of green power trading system based on blockchain technology[J]. Automation of Electric Power Systems202246(9): 1-10.
[17] 崔茗莉, 冯天天, 刘利利. 双碳目标下区块链与可再生能源的融合发展研究[J]. 智慧电力202452(2): 17-24.
  Cui M L, Feng T T, Liu L L. Integration and development of blockchain and renewable energy under double carbon target[J]. Smart Power202452(2): 17-24.
[18] 吴军, 毕研林, 李健, 等. 不对称信息下基于委托代理模型的地沟油监管政策研究[J]. 系统工程理论与实践201636(10): 2610-2617.
  Wu J, Bi Y L, Li J, et al. Regulatory policy for gutter oil based on principal-agent model under asymmetric information[J]. Systems Engineering—Theory & Practice201636(10): 2610-2617.
[19] 程红, 汪贤裕, 郭红梅, 等. 道德风险和逆向选择共存下的双向激励契约[J].管理科学学报201619(12): 36-45.
  Cheng H, Wang X Y, Guo H M, et al. Bilateral incentive contract with both moral hazard and adverse selection[J]. Journal of Management Sciences in China201619(12): 36-45.
[20] 陈晓红, 余章美, 李金霖, 等. 不对称信息下企业污染治理外包的契约设计[J]. 系统工程理论与实践202040(2): 273-283.
  Chen X H, Yu Z M, Li J L, et al. Design contracts for pollution abatement service under asymmetric information[J]. Systems Engineering-Theory & Practice202040(2): 273-283.
[21] 王先甲, 欧蓉, 陈佳瑜. 公平偏好下双代理人激励契约设计研究[J].中国管理科学202230(1): 100-110.
  Wang X J, Ou R, Chen J Y. Research on the design of double-agent incentive contract under fairness preference[J]. Chinese Journal of Management Science202230(1): 100-110.
[22] 费晨, 余鹏, 费为银, 等. 道德风险下带有Knight不确定的最优动态契约设计[J]. 管理科学学报201922(6): 86-96.
  Fei C, Yu P, Fei W Y, et al. Dynamics of contract design with moral hazards under Knightian uncertainty[J]. Journal of Management Sciences in China201922(6): 86-96.
[23] Cui Y, Gaur V, Liu J. Supply chain transparency and blockchain design[J]. Management Science202370(5): 3245-3263.
[24] 徐春秋, 赵道致, 原白云, 等. 上下游联合减排与低碳宣传的微分博弈模型[J]. 管理科学学报201619(2): 53-65.
  Xu C Q, Zhao D Z, Yuan B Y, et al. Differential game model on joint carbon emission reduction and low-carbon promotion in supply chains[J]. Journal of Management Sciences in China201619(2): 53-65.
[25] Tsay A, Agrawal N. Channel conflict and coordination in the E-commerce age[J]. Production and Operations Management200413(1): 93-110.
[26] 郑君君, 董金辉, 任天宇. 基于环境污染第三方治理的随机微分合作博弈[J].管理科学学报202124(7): 76-93.
  Zheng J J, Dong J H, Ren T Y. A stochastic differential cooperative game based on the third-party governance of environmental pollution[J]. Journal of Management Sciences in China202124(7): 76-93.
[27] 胡劲松, 纪雅杰, 马德青. 基于消费者效用的电商供应链企业的产品质量和服务策略研究[J]. 系统工程理论与实践202040(10): 2602-2616.
  Hu J S, Ji Y J, Ma D Q. Research on product quality and service strategy of ECSC enterprises based on consumer utility[J]. Systems Engineering—Theory & Practice202040(10): 2602-2616.
[28] Shen B, Dong C W, Minner S. Combating copycats in the supply chain with permissioned blockchain technology[J]. Production and Operations Management202231(1): 138-154.
文章导航

/