主管:中国科学院
主办:中国优选法统筹法与经济数学研究会
   中国科学院科技战略咨询研究院

基于微分博弈的消费者参与下政企合作的数字化转型策略研究

  • 郑迪文 ,
  • 谢卫红 ,
  • 李淑荧 ,
  • 李忠顺 ,
  • 王永健
展开
  • 1.广东工业大学管理学院,广东 广州 510520
    2.广东工业大学经济学院,广东 广州 510520
    3.广东工业大学数字经济与数据治理实验室,广东 广州 510520
    4.广东省制造业大数据创新研究中心,广东 广州 510520
    5.广东工业大学大数据战略研究中心,广东 广州 510520
王永健(1986-),男(汉族),江西赣州人,广东工业大学管理学院,副教授,博士,研究方向:企业数字化转型、博弈论及其应用,E-mail: wangyj529@gdut.edu.cn.

收稿日期: 2023-08-03

  修回日期: 2023-12-23

  网络出版日期: 2025-04-29

基金资助

国家自然科学基金面上项目(72274041);教育部人文社会科学研究青年基金项目(23YJC630099);广东省哲学社会科学项目(GD23XGL026);第73批博士后基金面上项目(2023M730727)

Digital Transformation Strategy of Consumer Participation and Government-Enterprise Cooperation: A Differential Game Method

  • Diwen Zheng ,
  • Weihong Xie ,
  • Shuying Li ,
  • Zhongshun Li ,
  • Yongjian Wang
Expand
  • 1.School of Management,Guangdong University of Technology,Guangzhou 510520,China
    2.School of Economics,Guangdong University of Technology,Guangzhou 510520,China
    3.Digital Economy and Data Governance Laboratory,Guangdong University of Technology,Guangzhou 510520,China
    4.Guangdong Manufacturing Big Data Innovation Research Center,Guangzhou 510520,China
    5.Big Data Strategy Research Center,Guangdong University of Technology,Guangzhou 510520,China

Received date: 2023-08-03

  Revised date: 2023-12-23

  Online published: 2025-04-29

摘要

在数字经济蓬勃发展下,地方政府与传统企业如何在消费者参与情境下实现有效的协同合作,以促进企业数字化转型,已成为如今数字化转型研究的重要议题。本研究基于微分博弈模型致力于探究消费者参与下的地方政府与传统企业间合作的数字化转型策略,以及不同合作情形如何推动传统企业的数字化转型。研究结果显示:第一,在非合作博弈中,虽然各方主要根据自身的边际收益制定策略,但这种策略的动态互动实际上对整个生态系统的效益产生了非预期的积极影响,为传统企业数字化转型提供了新的视角。第二,政府补贴政策需在影响各方长期策略和生态系统平衡的前提下谨慎施行,过度依赖补贴可能引发策略依赖性问题。第三,合作博弈中的策略不仅涉及最优决策分析,还包括这些策略如何促进生态系统整合与优化以推动传统企业的数字化转型。本研究的理论贡献在于为消费者参与下的政府和企业合作提供了战略指导,其实践意义则体现在指导传统企业成功实现数字化转型的过程中。

本文引用格式

郑迪文 , 谢卫红 , 李淑荧 , 李忠顺 , 王永健 . 基于微分博弈的消费者参与下政企合作的数字化转型策略研究[J]. 中国管理科学, 2025 , 33(4) : 224 -234 . DOI: 10.16381/j.cnki.issn1003-207x.2023.1295

Abstract

In the flourishing digital economy, the imperative to facilitate an effective collaboration between local governments and traditional businesses in the context of consumer participation forms the core of this study. It stems from the need to understand and optimize the strategic interplay that drives digital transformation in traditional enterprises, which has become a pivotal concern in the realm of digital economy studies. The problem is articulated by questioning how consumer involvement can enhance government and business collaboration for digital transformation. The focus is on identifying and implementing strategies that allow for efficient integration of consumer feedback and demands into the digital transformation initiatives of traditional businesses. Employing differential game theory, the methodology adopted in this study involves constructing dynamic models to analyze the strategic interactions among local governments, businesses, and consumers. The models incorporate various strategic frameworks including non-cooperative, Stackelberg, and cooperative games, which help in understanding the impacts of different strategic interactions on the digital transformation process. The approach to resolving these issues is through a rigorous analysis of game-theoretical models, which are used to predict and analyze the behavior of stakeholders under different strategic setups. By simulating these interactions, it aims to derive optimal strategies that promote sustainable digital transformation practices while maximizing the collective benefits of all parties involved in this study. The main findings of this research highlight the nuanced dynamics of the strategic interactions. For instance, it is shown that non-cooperative strategies, though primarily focused on individual gains, can inadvertently result in benefits to the overall ecosystem—thereby providing a new perspective on digital transformation. On the other hand, cooperative strategies are found to significantly enhance the ecosystem's integration and optimization, which are crucial for the robust digital transformation of businesses. Furthermore, it contributes to existing literature by offering a detailed theoretical framework that elucidates the role of consumer involvement in digital transformation strategies. It also provides strategic guidance for policymakers and businesses on implementing effective digital transformation strategies that incorporate consumer feedback and demands. It not only aids in understanding the strategic dynamics between governments, businesses, and consumers but also serves as a blueprint for developing policies that foster an environment conducive to digital innovation.

参考文献

1 李天娇, 刘德海. 属地管理原则下突发公共卫生事件物资调配的微分博弈模型[J]. 中国管理科学202432(11):233-242.
  Li T J, Liu D H. Research of territorial inner principal on material dynamic allocation for sudden public health events based on differential games[J]. Chinese Journal of Management Science202432(11):233-242.
2 刘德智, 李毅斌, 马飞. 云计算环境下行业信息资源配置模式研究——以道路运输行业为例[J]. 情报杂志201231(8): 142-145+128.
  Liu D Z, Li Y B, Ma F. Industry information resources allocation based on cloud computing: The road transport industry as an example[J]. Journal of Intelligence201231(8): 142-145+128.
3 郑月龙, 周冰洁, 白春光, 等. 双向协同下产业共性技术跨组织合作研发微分博弈模型研究[J]. 中国管理科学202331(9): 255-265.
  Zheng Y L, Zhou B J, Bai C G, et al. Differential game model of the cross-organizational cooperative R&D of general purpose technologies under two-way collaboration[J]. Chinese Journal of Management Science202331(9): 255-265.
4 王福胜, 郑茜月, 张东超. 数字化转型、国际化战略与企业创新[J]. 运筹与管理202433(9):120-125.
  Wang F S, Zheng X Y, Zhang D C. Digital transformation, internationalization strategy and enterprise innovation[J]. Operations Research and Management Science202433(9):120-125.
5 丁龙, 胡斌, 常珊.制造商RFID策略与零售商窜货策略的动态博弈分析[J].中国管理科学202230(8): 82-94.
  Ding L, Hu B, Chang S. Dynamic game analysis of manufacturer RFlD adoption and retailer parallel importation[J]. Chinese Journal of Management Science202230(8): 82-94.
6 Zhang W, Zhao S, Wan X. Industrial digital transformation strategies based on differential games[J]. Applied Mathematical Modelling202198(12): 90-108.
7 刘维奇, 李建莹, 周洁, 等. 数字化转型是否提升了企业经济价值和社会价值?——理论推演及实证检验[J/OL]. 中国管理科学2024, DOI: 10.16381/j.cnki.issn1003-207x.2022.2726 .
  Liu W Q, Li J Y, Zhou J, et al. Digital transformation and firm value: Theory and empirical evidence[J/OL]. Chinese Journal of Management Science2024, DOI: 10.16381/j.cnki.issn1003-207x.2022.2726 .
8 Peng Y, Chen B, Lee C C. Equilibrium in platform service supply chain network with quality and innovation considering digital economy[J]. Annals of Operations Research202332(4): 1-30.
9 曾倩, 韩珣, 方新. 效率与公平视角下企业及政府的资源配置决策[J]. 中国管理科学202028(10): 88-97.
  Zeng Q, Han X, Fang X. Resources allocation decisions of business and government in the perspective of efficieney and fairness[J]. Chinese Journal of Management Science202028(10): 88-97.
10 赵黎明, 宋瑶, 殷建立. 战略性新兴产业、传统产业与政府合作策略研究[J]. 系统工程理论与实践201737(3): 642-663.
  Zhao L M, Song Y, Yin J L. Research on cooperation strategies among strategic emerging industries, traditional industries, and government[J].Systems Engineering- Theory & Practice201737(3): 642-663.
11 Chen X, Li J, Tang D, et al. Stackelberg game analysis of government subsidy policy in green product market[J]. Environment, Development and Sustainability202314(12): 1-30.
12 Yao F, Wang Y, Yan Y, et al. Manufacturer’s online recycling channel intrusion strategies considering digital technology enabling and government subsidies[J]. Managerial and Decision Economics202445(2): 1043-1066.
13 Zhao X, Zhao L, Sun X, et al. The incentive effect of government subsidies on the digital transformation of manufacturing enterprises[J]. International Journal of Emerging Markets202378(3): 1-21.
14 Plambeck E L. Reducing greenhouse gas emissions through operations and supply chain management[J]. Energy Economics201234(11): 64-74.
15 徐琪, 吴翠, 陈启. 共享平台下供应链闲置资源动态优化配置策略[J]. 运筹与管理202130(9): 86-92.
  Xu Q, Wu C, Chen Q. Dynamic optimal allocation strategy of ldle resources supply chain on shared platform[J]. Operations Research and Management Science202130(9): 86-92.
文章导航

/