模糊群决策分类方法广泛应用于政治、经济与社会生活各个领域,可有效避免个人知识与经验局限性所导致的决策失误。针对信息不完备的多准则群决策问题,提出基于CI-TOPSIS的梯形直觉模糊多准则群决策分类方法。首先,给出梯形直觉模糊集及广义梯形直觉模糊几何聚类算子,兼顾考虑群决策中相应依赖属性与决策者的决策偏好。其次,给出基于离散Choquet积分的TOPSIS算子(CI-TOPSIS),以此为基础,进一步给出基于CI-TOPSIS的梯形直觉模糊多准则群决策分类步骤,用于确定具有最大可信度群体一致案例比较信息集,并逐步引导决策者给出部分及全部方案的精确分类,充分考虑模糊决策环境下决策者偏好与案例比较信息的级别关系。最后,通过一个投资决策实例对所提出的多准则分类方法进行验证。实例分析表明:该方法克服了决策过程中信息的遗漏,充分保留了决策过程中信息的完备性,更适用于直觉模糊群决策环境下的决策实践,是一种非常有效和科学的方法,可应用推广到更多决策领域。本文所得结论,对于有效解决多人多投资方案的群决策问题,具有一定的借鉴意义。
Fuzzy group decision making method is widely used in various fields of politics, economy and social life, which can effectively avoid the decision-making mistakes caused by personal knowledge and experience. A multiple criteria sorting method in the group decision making context based on CI-TOPSIS is proposed for fuzzy intuition trapezoidal multiple criteria group decision making problems with incomplete information. Firstly,the trapezoidal intuitionistic fuzzy sets and generalized trapezoidal intuitionistic fuzzy geometric clustering operator are given considering the corresponding dependence attribute among group decision-making. Secondly, the TOPSIS operator based on discrete Choquet integral (CI-TOPSIS) is given, which is based on and the classification procedure of trapezoidal intuitionistic fuzzy multi-criteria group decision based on CI-TOPSIS is given, which is used to determine the information set with the most credible group consensus case, and gradually guide decision-makers to give some precise classification of all programs, give full consideration to fuzzy decision-making environment, decision-making preferences and level relationship of case-level comparison information. Finally, an investment decision examples is used to verify the proposed multiple criteria sorting method and show that it may overcome information omission, and retain the full information in the decision-making process, more suitable for the decision practice under intuition fuzzy group decision making environment, and it is a kind of very effective and scientific method, which can be applied to more decision-making areas. As well as, the conclusion of this paper is of great significance for effective solving the group decision-making problem of multi-person investment scheme.
[1] Hwang C L, Yoon K. Multiple attributes decision making methods and applications[M]. Berlin:Springer Press, 1981.
[2] Zadeh L A. Fuzzy sets[J]. Control,1965,22(8):338-356.
[3] 万树平,董九英. 基于三角直觉模糊数Choquet积分算子的多属性决策方法[J]. 中国管理科学, 2016, 22(3):121-130.
[4] 赵树平,梁昌勇,罗大伟. 基于VIKOR和诱导广义直觉梯形模糊Choquet积分算子的多属性群决策方法[J]. 中国管理科学, 2016, 24(6):132-142.
[5] 裴植,鲁建厦,郑力. 广义区间值直觉模糊数及其在工位评估中的应用[J].系统工程理论与实践,2012,32(10):2198-2206.
[6] 汪新凡.模糊数直觉模数几何集成算子及其在决策中的应用[J].控制与决策,2008, 23(6):607-612.
[7] Atanassov K, Gargov G. Interval-valued intuitionistic fuzzy sets[J]. Fuzzy Sets System, 1989, 31(3):343-349.
[8] Ashtiani B, Haghighirad F. Extension of fuzzy TOPSIS method based on interval-valued fuzzy sets[J]. Applied Soft Computing, 2009, 9(2):457-461.
[9] Atanassov K T. Operators over interval-valued intuitionistic fuzzy sets[J]. Fuzzy Sets System, 1994, 64(2):159-174.
[10] Tan Chunqiao, Zhang Q. Fuzzy multiple attribute decision making based on interval-valued intuitionistic fuzzy sets[C]//Proceeding of the 2006 IEEE International Conference on System, Man and Cybernetics, Budapest, October 9-12, 2006.
[11] Tan Chunqiao. A multi-criteria interval-valued intuitionistic fuzzy group decision making with Choquet integral-based TOPSIS[J].Expert Systems with Applications, 2011, 38(11):3023-3033.
[12] Xu Zeshui. Methods for aggregating interval-valued intuitionistic fuzzy information and their application to decision making[J].Control and Decision, 2007, 22(2):215-219.
[13] Wei Guiwu. Some geometric aggregation functions and their application to dynamic multiple attribute decision making in the intuitionistic fuzzy setting[J].International Journal of Uncertainty Fuzziness and Knowledgment-Based System, 2009, 17(2):179-196.
[14] Greco S, Mousseau V, Slowinski R. Ordinal regression revisited:Multiple criteria ranking using a set of additive value functions[J]. European Journal of Operational Research, 2008, 191(2):416-436.
[15] Almeida-Dias J, Figueira J R, Roy B. ELECTRE TRI-C:A multiple criteria sorting method based on characteristic reference actions[J]. European Journal of Operational Research, 2010, 204(3):565-580.
[16] Greco S, Kadzinski M, Mousseau V, et al. Robust ordinal regression for multiple criteria group decision:UTAGMS-GROUP and UTADISGMS-GROUP[J]. European Journal of Operational Research, 2012, 52(3):549-561.
[17] Kadzinski M, Greco S, Slowinski R. Selection of a representative value function for robust ordinal regression in group decision making[J]. Group Decision and Negotiation, 2013, 22(3):429-462.
[18] Cai Fuling, Liao Xiuwu, Wang Kanliang. An interactive sorting approach based on the assignment examples of multiple decision makers with different priorities[J]. Annals of Operations Research, 2012, 197(1):87-108.
[19] 刘佳鹏,廖貅武,蔡付龄.基于案例比较信息的多准则群决策分类方法[J].系统工程理论与实践, 2014,34(4):971-980.