主管:中国科学院
主办:中国优选法统筹法与经济数学研究会
   中国科学院科技战略咨询研究院
论文

引入外部冲击的中国铜期货市场高频波动率建模与预测

展开
  • 1. 中南大学商学院, 湖南 长沙 410083;
    2. 中南大学金属资源战略研究院, 湖南 长沙 410083

收稿日期: 2016-08-03

  修回日期: 2017-09-04

  网络出版日期: 2018-11-23

基金资助

国家自然科学基金重点资助项目(71633006);国家自然科学基金面上项目(71874210,71874207)

Forecasting and Modeling of China's Nonferrous Metal Futures Market Volatility Based on the Introduction of External shocks: Taking Copper as Example

Expand
  • 1. School of Business, Central South University, Changsha 410083, China;
    2. Institute of Metal Resources Strategy, Central South University, Changsha 410083, China

Received date: 2016-08-03

  Revised date: 2017-09-04

  Online published: 2018-11-23

摘要

在中国经济逐渐全球化的背景下,引入外部冲击对中国有色金属期货市场的高频波动率进行建模和预测,有利于提高对中国有色金属价格波动的预测能力。本文将外部冲击信息引入HAR-RV-CJN模型,以中国上海期货交易所铜期货高频数据样本为例,对模型的拟合效果进行实证检验,并基于自举法的SPA检验,评估高频波动率模型的预测精度。结果表明,外部冲击变量在长期内对期铜已实现波动率的预测产生重要影响,引入外部冲击信息后的HAR-RV-CJN-ES模型相比于HAR-RV-CJ模型和HAR-RV-CJN模型,拟合效果和预测精度在长期都有了显著提高。

本文引用格式

朱学红, 邹佳纹, 韩飞燕, 谌金宇 . 引入外部冲击的中国铜期货市场高频波动率建模与预测[J]. 中国管理科学, 2018 , 26(9) : 52 -61 . DOI: 10.16381/j.cnki.issn1003-207x.2018.09.006

Abstract

In the context of China's gradual globalization of economy, to bring in external shocks for volatility modeling of China's nonferrous metal futures market is beneficial for improving the forecast of China's nonferrousmetal price volatility.Taking the high-frequency data samples of copper futures in Shanghai Futures Exchange as an example, the fitting effect of the new HAR-RV-CJN-ES model into which external shocks have been introduced is tested. Besides, the predictive accuracy of the volatility model is also evaluated by using bootstrapping SPA test.The results show that external shocks have great impact on the forecast of realized volatility of copper futures in the long term. Compared with the HAR-RV-CJ model and the HAR-RV-CJN Model, the HAR-RV-CJN-ES model with external shockshas significantly improve the fitting effect and prediction accuracy in the long run.

参考文献

[1] Engle R F. Autoregressive conditional heteroscedasticity with estimates of the variance of united kingdom inflation[J].Econometrica,1982, 50(4):987-1008.

[2] Bollerslev T.Generalized autoregressive conditional heteroskedasticity[J].Journal of Econometrics,1986,31(3):307-327.

[3] Nelson D B. Conditional heteroskedasticity in asset returns:A new approach[J].Econometrica,1991, 62(1):347-370.

[4] Baillie R T, Bollerslev T, Mikkelsen H O. Fractionally integrated generalized autoregressive conditional heteroskedasticity[J].Journal of Econometrics,1996,74(1):3-30.

[5] 郭华, 王春峰, 房振明. 高频视角下微观交易信息对价格波动的影响[J]. 系统工程学报, 2014, 29(6):780-790.

[6] 唐勇, 林欣. 考虑共同跳跃的波动建模:基于高频数据视角[J]. 中国管理科学, 2015, 23(8):46-53.

[7] Hansen P R, Lunde A. A forecast comparison of volatility models:does anything beat a GARCH (1, 1)?[J].Journal of Applied Econometrics,2005, 20(7):873-889.

[8] Andersen T G, Bollerslev T. Answering the skeptics:Yes, standard volatility models do provide accurate forecasts[J]. International Economic Review, 1998,39(4):885-905.

[9] Andersen T G, Bollerslev T, Diebold F X, et al. The distribution of realized stock return volatility[J]. Journal of Financial Economics,2001,61(1):43-76.

[10] Barndorff-Nielsen O E, Shephard N. Estimating quadratic variation using realized variance[J].Journal of Applied Econometrics,2002, 17(5):457-477.

[11] Corsi F. A simple approximate long-memory model of realized volatility[J]. Journal of Financial Econometrics,2009,7(2):174-196.

[12] Andersen T G, Bollerslev T, Diebold F X. Roughing it up:Including jump components in the measurement, modeling, and forecasting of return volatility[J]. The Review of Economics and Statistics,2007,89(4):701-720.

[13] 张小勇, 任德平. 基于高频数据沪深300股指期货量价关系研究[J]. 湖南大学学报:社会科学版, 2013, 27(2):48-54.

[14] 瞿慧, 李洁, 程昕. HAR族模型与GARCH族模型对不同期限波动率的预测精度比较-基于沪深300指数高频价格的实证分析[J]. 系统工程, 2015,(3):32-37.

[15] Ma Feng, Wahab M, Huang Dengshi, et al. Forecasting the realized volatility of the oil futures market:A regime switching approach[J]. Energy Economics, 2017, 67:136-145.

[16] Cho S, Shin D W. An integrated heteroscedastic autoregressive model for forecasting realized volatilities[J]. Journal of the Korean Statistical Society, 2016, 45(3):371-380.

[17] Wen Fenghua, Gong Xu, Cai Shenghua. Forecasting the volatility of crude oil futures using HAR-type models with structural breaks[J]. Energy Economics, 2016, 59:400-413.

[18] 瞿慧, 程思逸. 考虑成分股联跳与宏观信息发布的沪深300指数已实现波动率模型研究[J]. 中国管理科学, 2016, 24(12):10-19.

[19] 刘志东, 杨竞一. 基于非参数日内跳跃检验和高频数据的公司信息披露对股市价格波动影响研究[J]. 中国管理科学, 2016, 24(10):22-34.

[20] 纪敏.本轮国内价格波动的外部冲击因素考察[J].金融研究,2009, (6):31-43.

[21] 尹力博, 韩立岩. 外部冲击对PPI指数的结构性传导-基于FAVAR模型的全视角分析[J]. 数量经济技术经济研究, 2012,(12):66-81.

[22] Cevik S,Saadi T S. A barrel of oil or a bottle of wine:How do global growth dynamics affect commodity prices?[R]. Working Paper, International Monetary Fund,2011.

[23] 边璐,张江朋,宋宇辰,等. 国际金属价格指数、广义需求与中国稀土产品价格——基于两市场协整视角下的多因素模型研究[J]. 资源科学,2014,36(3):641-652.

[24] Baffes J.Oil spills on other commodities[J].Resources Policy,2007,32(3):126-134.

[25] Hammoudeh S,Sari R, Ewing B T.Relationships among strategic commodities and with financial variables:A new look[J].Contemporary Economic Policy,2008,27(2):251-264.

[26] Soytas U,Sari R, Hammodeh S, et al.world oil prices,precious metal prices and macroeconomy in Turkey[J].Energy Policy,2009,37(12):5557-5566.

[27] 黄健柏, 程慧, 郭尧琦, 等.美元、石油和金属价格-基于VAR模型的实证研究[J].经济经纬,2012, (3):45-49.

[28] Zhu Xuehong, Chen Jinyu, Zhong Merui. Dynamic interacting relationships among international oil prices, macroeconomic variables and precious metal prices[J].Transactions of Nonferrous Metals Society of China, 2015,25(2):669-676.

[29] 田利辉,谭德凯. 大宗商品现货定价的金融化和美国化问题——股票指数与商品现货关系研究[J]. 中国工业经济,2014,(10):72-84.

[30] 韩立岩,尹力博. 投机行为还是实际需求?——国际大宗商品价格影响因素的广义视角分析[J]. 经济研究,2012,47(12):83-96.

[31] 孙洁. 考虑跳跃和隔夜波动率的中国股票市场波动率建模与预测[J]. 中国管理科学, 2014, 22(6):114-124.

[32] Barndorff-Nielsen O E, Shephard N. Econometrics of testing for jumps in financial economics using bipower variation[J]. Journal of financial Econometrics, 2006,4(1):1-30.

[33] Huang Xin, Tauchen G. The relative contribution of jumps to total price variance[J]. Journal of Financial Econometrics,2005,3(4):456-499.

[34] Hansen P R, Lunde A. A realized variance for the whole day based on intermittent high-frequency data[J]. Journal of Financial Econometrics, 2005, 3(4):525-554.

[35] 魏宇, 余怒涛. 中国股票市场的波动率预测模型及其SPA检验[J]. 金融研究, 2007,(7):138-150.

[36] 王鹏, 王建琼. 中国股票市场的收益分布及其SPA检验[J]. 系统管理学报, 2008, 17(5):542-547.

[37] 钟美瑞, 谌杰宇, 黄健柏,等. 基于MSVAR模型的有色金属价格波动影响因素的非线性效应研究[J]. 中国管理科学, 2016, 24(4):45-53.

[38] Xu Xioaqing, Fung H G. Cross-market linkages between U.S. and Japanese precious metals futures trading[J].Journal of International Financial Markets,2005,15(2):107-124.

[39] 朱学红,谌金宇,邵留国. 信息溢出视角下的中国金属期货市场国际定价能力研究[J]. 中国管理科学,2016,24(9):28-35.
文章导航

/