主管:中国科学院
主办:中国优选法统筹法与经济数学研究会
   中国科学院科技战略咨询研究院
论文

基于新鲜度的冷链一体化库存与定价联合决策

展开
  • 1. 烟台大学经济管理学院, 山东 烟台 264005;
    2. 山东威海外事学院管理学院, 山东 威海 264504;
    3. 仁荷大学校FTA与物流研究院, 韩国 仁川 22212

收稿日期: 2017-03-10

  修回日期: 2017-11-17

  网络出版日期: 2018-09-20

基金资助

国家自然科学基金资助项目(71672166,71372122,71771138);山东省自然科学基金资助项目(ZR2017MG009)

Inventory and Pricing Decision of an Integrated Cold Chain Based on Freshness

Expand
  • 1. School of Economics and Management of Yantai University, Yantai 264005, China;
    2. School of Management of Shandong Weihai Institute of Foreign Affairs, Weihai 264504, China;
    3. Institute of International Trade and Consulting Service, Inha University, Incheon 22212, Korea

Received date: 2017-03-10

  Revised date: 2017-11-17

  Online published: 2018-09-20

摘要

为了揭示生鲜农产品在流通中质量与数量损耗的变化规律,分析"双重损耗"对冷链库存的影响,针对配送中心与零售商组成的两级冷链系统,引入保鲜努力与时间因素对生鲜农产品的数量与质量损耗进行刻画,尤其突显了二者间的关联性及其合理性,需求上综合考虑了价格与新鲜度的影响,以供应链总平均利润最大化为目标函数,建立了二级冷链一体化库存模型,并对系统最佳的保鲜投入、库存及定价进行了规划求解。随后,以某连锁超市销售的鲜切果蔬为例进行仿真,验证了模型的有效性。最后,灵敏度分析发现,一方面,系统利润会随着新鲜度时间敏感性的降低与保鲜努力敏感性的增加而增加,且时间敏感因子更容易左右系统利润的变化。另一方面,并非所有的生鲜农产品都适用打折促销。考虑商品"双重损耗"所做的库存与定价的优化分析不仅为生鲜农产品冷链的理论研究提供了新思路,也为冷链运作实践提供了更为可靠、更为有效的决策参考。

本文引用格式

王淑云, 姜樱梅, 牟进进 . 基于新鲜度的冷链一体化库存与定价联合决策[J]. 中国管理科学, 2018 , 26(7) : 132 -141 . DOI: 10.16381/j.cnki.issn1003-207x.2018.07.014

Abstract

Pricing and inventory control of deteriorating items have been the focus of cold chain control. In recent years, with the abundance of literature on pricing and inventory policy, more and more scholars start to research the joint pricing and replenishing policy for deteriorating inventory. However, most of them are with a view to retailers' policy rather than to a cold chain system, let alone the joint decision on inventory and pricing of an integrated cold chain. Moreover, deterioration in the previous researches is merely defined as the quantity loss of perishable products, which does not conform to all of the reality.
In real life, the deterioration of fresh agri-products not only means the decrease in the quantity/number, but also means the decrease in the quality, which is called "double loss". Therefore, "double loss" should be involved to explore the effects on joint pricing and replenishing policy in the integrated cold chain.
Firstly, the relations of quantity loss rate with freshness is built, where freshness is the function of preservation efforts and time. Meanwhile, the demand rate is considered as the function of both freshness and price. All the functions are justified.
Secondly, an integrated two-echelon cold chain inventory model composed of one distribution center (DC) and a retailer is proposed, where DC is both a distributor and a logistics service provider. It takes the maximum system profit per unit time as the basis of decision making to analyze the effects of freshness on the cold chain profit preferably. A genetic algorithm is employed to find the optimal preservation technology, the optimal replenishment strategy and the optimal pricing.
At last, as a simulation example, fresh-cut fruits and vegetables sold in a supermarket are analyzed to demonstrate the feasibility of the model. Through the sensitivity analysis, it is found that the decrease of the time sensitive coefficient or the increase of the freshness-keeping sensitive coefficient would result in the increase of system profit, and the time sensitive coefficient is more likely to change system profitability. However, not all fresh agri-products are adaptable to discount promotion.
The research of the "double loss" on the effect of joint pricing and replenishing policy in the integrated cold chain provides a new idea for the study of fresh agri-products. The optimized model and analysis result also provide references for cold chain operation.
The proposed model can be extended in multiple products and in coordination of the integrated cold chain system.

参考文献

[1] Lodree Jr E J, Uzochukwu B M. Production planning for a deteriorating item with stochastic demand and consumer choice[J]. International Journal of Production Economics, 2008, 116(2):219-232.

[2] Hsieh T P, Dye C Y. Pricing and lot-sizing policies for deteriorating items with partial backlogging under inflation[J]. Expert Systems with Applications, 2010, 37(10):7234-7242.

[3] 彭志强, 熊中楷, 李根道. 考虑顾客策略行为的易逝品定价与再制造柔性补货机制研究[J]. 中国管理科学, 2010, 18(2):32-41.

[4] 柏庆国, 徐贤浩, 潘伟. 多分销渠道下易变质产品的联合库存与定价模型[J]. 管理工程学报, 2017, 31(3):84-92.

[5] Dye C Y, Yang C T. Optimal dynamic pricing and preservation technology investment for deteriorating products with reference price effects[J]. Omega, 2016, 62:52-67.

[6] 李贵萍, 段永瑞. 时变变质率产品的订购-定价策略[J]. 工业工程, 2016, 19(4):8-17.

[7] 王宪杰, 刘朋辉, 王淑云. 具有Weibull生存死亡特征的冷链品库存补货定价策略研究[J]. 运筹与管理, 2017, 26(1):45-52.

[8] Taleizadeh A A, Noori-Daryan M, Cárdenas-Barró L E. Joint optimization of price, replenishment frequency, replenishment cycle and production rate in vendor managed inventory system with deteriorating items[J]. International Journal of Production Economics, 2015, 159(12):285-295.

[9] Yang P C, Wee H M. A single-vendor and multiple-buyers production-inventory policy for a deteriorating item[J]. European Journal of Operation Research, 2002,143(3):570-581.

[10] Wang K J, Lin Y S, Yu J C P. Optimizing inventory policy for products with time-sensitive deteriorating rates in a multi-echelon supply chain[J]. International Journal of Production Economics, 2011,130(1):66-76.

[11] 王淑云, 姜樱梅, 王宪杰. 农产品冷链三级库存一体化策略研究[J]. 中国管理科学, 2016, 24(2):108-114.

[12] Li Yantong, Chu Feng, Yang Zhen, et al. A production inventory routing planning for perishable food with quality consideration[J]. IFAC-Papers on Line, 2016, 49(3):407-412.

[13] Fauza G, Amer Y, Lee S H, et al. An integrated single-vendor multi-buyer production-inventory policy for food products incorporating quality degradation[J]. International Journal of Production Economics, 2016, 182:409-417.

[14] Qin Yiyan, Wang Jianjun, Wei Caimin. Joint pricing and inventory control for fresh produce and foods with quality and physical quantity deteriorating simultaneously[J]. International Journal of Production Economics, 2014, 152:42-48.

[15] 冯颖,余云龙,张炎治,等. TPL服务商参与决策的生鲜农产品三级供应链协调机制[J]. 管理工程学报, 2015, 29(4):213-221.

[16] 但斌,王磊,李宇雨. 考虑消费者效用与保鲜的生鲜农产品EOQ模型[J]. 中国管理科学, 2011, 19(01):100-108.

[17] Piramuthu S, Zhou Wei. RFID and perishable inventory management with shelf-space and freshness dependent demand[J]. International Journal of Production Economics, 2013, 144(2):635-640.

[18] 李琳,范体军. 零售商主导下生鲜农产品供应链的定价策略对比研究[J]. 中国管理科学, 2015, 23(12):113-123.

[19] Wu Jiang, Chang C T, Cheng M C, et al. Inventory management for fresh produce when the time-varying demand depends on product freshness, stock level and expiration date[J]. International Journal of Systems Science:Operations & Logistics, 2016, 3(3):138-147.

[20] Feng Lin, Chan Y L, Cárdenas-Barrón L E. Pricing and lot-sizing polices for perishable goods when the demand depends on selling price, displayed stocks, and expiration date[J]. International Journal of Production Economics, 2017, 185:11-20.

[21] 吴忠和, 陈宏, 梁翠莲. 时间约束下不对称信息鲜活农产品供应链应对突发事件协调模型[J]. 中国管理科学, 2015, 23(6):126-134.

[22] Aung M M, Chang Y S. Temperature management for the quality assurance of a perishable food supply chain[J]. Food Control, 2014, 40:198-207.

[23] 潘澜澜,李闯,王洋. 生鲜农产品物流过程中的温度管理方法研究[J]. 陕西农业科学, 2016, 62(02):50-52.

[24] 贺雪华, 李林, 白登荣,等. 改进型城口腊肉贮藏过程中的品质变化及货架期预测[J]. 食品科学, 2017, 38(11):249-255.

[25] 陈奕娟,何利芳,张诚一. 考虑新鲜度的生鲜食品动态定价模型[J]. 统计与决策, 2016,(8):47-50.
文章导航

/