针对"互联网+分时租赁"市场竞争存在有限理性,且不断模仿、学习和改进的特点,本文通过构建进化博弈模型,来揭示租车软件进出市场、抢占市场的博弈过程,并结合当前打车软件市场采用最多的价格战对模型进行了具体化分析和算例验证。研究表明:一个初期稳定的分时租赁市场受到某一公司价格战策略的突变冲击后,不存在纯策略的进化稳定状态,但一定有混合策略的进化稳定状态;对于准备进入市场的公司或想扩大市场份额公司,其最优策略是选用价格战;而对于已经在该市场内运营的公司,其最优反应策略也是降价。
Based on the traits of bounded rationality, imitation as well as learning and improvement exists in the "Internet plus Periodic Renting" market competition. In this paper, an evolutionary game model is construted to reveal the mechanism of the car rental company to grab market share. Specifically, recent phenomenon of Price War in taxi-hailing app market is incorporated to analysis the model. A case study is given to demonstrate the interrelationships among action, evolutionary path and evolutionary stable strategy (ESS) in the end. The research shows that there is no pure strategy evolutionarily stable strategy, when the market is under the impact of price war lunched by a company. However, there must be an evolutionary stable state of the hybrid strategy. For companies that are ready to enter the market or want to expand their market share, the best strategy is to lunch a price war. And for companies that are already operating in the market, the best responsive strategy is to cut price.Theoretical explanation is given for the existence of ESS in car-sharing market competition, which offers guaidance on pricing strategy of the car rental company.
[1] 方志耕,刘思峰,李元年,等.基于有限知识和理性的双寡头战略定产纳什均衡问题研究.中国管理科学,2006,14(5):114-121.
[2] Smith M, Price B R. The logic of animal conflict. Nature, 1973, 246(5427):15-18.
[3] Friedman D. On economic applications of evolutionary game theory.Journal of Evolutionary Economics, 1998,8(1):15-43.
[4] Samuelson, L. Evolutionary games and equilibrium selection. Cambridge, MA:The MIT Press, 1997.
[5] Weibull J W. What have we learned from evolutionary game theory so far?.Working Paper,Research Institute of Industrical Economics, 1997.
[6] Safarzyńska K. van den Bergh J C J M. An evolutionary model of energy transitions with interactive innovation-selection dynamics. Journal of Evolutionary Economics, 2013, 23(2):271-293.
[7] Fischer T, Riedler J. Prices, debt and market structure in an agent-based model of the financial market. Journal of Economic Dynamics & Control, 2014, 48(C):95-120.
[8] Kuechle G. Persistence and heterogeneity in entrepreneurship:An evolutionary game theoretic analysis. Journal of Business Venturing, 2011, 26(4):458-471.
[9] Tan Jun, Wang Lingfeng. Real-time charging navigation of electric vehicles to fast charging stations:A Hierarchical game approach. IEEE Transactions on Smart Grid,2017,8(2):846-856.
[10] Tushar W, Saad W, Poor H V, et al. Economics of electric vehicle charging:A game theoretic approach. IEEE Transactions on Smart Grid, 2012, 3(4):1767-1778.
[11] 左晓露,郑锐,施文. 基于需求扩张效应的电动汽车充电设施投资策略研究. 科技管理研究, 2017,(2):207-214.
[12] 史乐峰, 吴文建, 曾令鹤,等. 电动汽车充电服务PPP定价模型及应用. 价格理论与实践, 2015,(8):94-96.
[13] 杨珺,冯鹏祥,孙昊,等. 电动汽车物流配送系统的换电站选址与路径优化问题研究.中国管理科学,2015,23(9):87-96.
[14] Kihm A, Trommer S. The new car market for electric vehicles and the potential for fuel substitution. Energy Policy, 2014, 73(5):147-157.
[15] 刘颖琦, 王静宇, Kokko A. 电动汽车示范运营的政策与商业模式创新:全球经验及中国实践. 中国软科学, 2014,(12):1-16.
[16] 尚甜甜, 缪小明. 国际新能源汽车科学知识网络结构及时空演变. 科技进步与对策, 2016, 33,(20):147-153.
[17] 于斌斌. 传统产业与战略性新兴产业的创新链接机理——基于产业链上下游企业进化博弈模型的分析.研究与发展管理,2012,24(3):100-108.
[18] 阮爱清,刘思峰. 基于进化博弈模型的产业集群成长研究.科学学与科学技术管理,2008,29(2):91-95.
[19] 翟丽丽,柳玉凤,王京,等. 软件产业虚拟集群企业间信任进化博弈研究.中国管理科学,2014,22(12):118-125.
[20] 姚明月,胡麦秀. 技术-环境壁垒条件下企业的技术创新动力——基于进化博弈分析. 科技管理研究,2015,35(19):98-102.
[21] 周旻. 基于进化博弈的产业集群机会主义行为控制模型.统计与决策, 2013,24(18):48-50.
[22] 秦字兴,朱阁. 基于政府、企业和消费者三方博弈的电动汽车市场推广分析. 工业工程,2015,18(4):1-8.
[23] 罗春林. 基于政府补贴的电动汽车供应链策略研究. 管理评论,2014,26(12):198-205.
[24] 钟太勇,杜荣. 基于博弈论的新能源汽车补贴策略研究. 中国管理科学,2015,23(1):817-822.
[25] 范如国, 冯晓丹. "后补贴"时代地方政府新能源汽车补贴策略研究. 中国人口·资源与环境, 2017, 27(3):30-38.
[26] Kieckh, Fer K, Volling T, et al. A hybrid simulation approach for estimating the market share evolution of electric vehicles. Transportation Science, 2014, 48(4):651-670.
[27] 杨浩雄, 魏彬. 网络约车与出租车的竞争博弈研究——以平台补贴为背景. 北京社会科学, 2016(5):68-76.