主管:中国科学院
主办:中国优选法统筹法与经济数学研究会
   中国科学院科技战略咨询研究院
论文

沪港通能否促进A股与香港股票市场一体化

展开
  • 1. 嘉实基金博士后工作站, 北京 100005;
    2. 北京大学光华管理学院, 北京 100871;
    3. 南开大学金融学院, 天津 300352;
    4. 南开大学中国特色社会主义经济建设 协同创新中心, 天津 300071
闫红蕾(1985-),女(汉族),辽宁沈阳人,嘉实基金与北京大学光华管理学院联合培养博士后,研究方向:金融工程、资产定价,E-mail:sunfloweryan@163.com.

收稿日期: 2015-07-31

  修回日期: 2016-03-24

  网络出版日期: 2017-01-23

基金资助

教育部人文社会科学研究规划基金项目(15YJA790090)

Does Shanghai-Hong Kong Stock Connect Promote Integration between Hong Kong and Mainland China's stock market

Expand
  • 1. Harvest Fund, Beijing 100005, China;
    2. Guanghua School of Management, Peking University, Beijing 100871, China;
    3. School of Finance, Nankai University, Tianjin 300152, China;
    4. Collaborative Innovation Center for China Economy, Nankai University, Tianjin 300071, China

Received date: 2015-07-31

  Revised date: 2016-03-24

  Online published: 2017-01-23

摘要

沪港通是否有助于促进A股与香港股票市场一体化?本文从微观视角研究沪港通标的股中A+H交叉上市公司A股和H股的价格差异,分析A股市场和港股市场一体化程度的变化并提出提高市场一体化的套利交易策略。基于转移模型的log t检验结果表明,交叉上市公司A股和H股价格的收敛性因公司和时间而变,具有收敛关系的交叉上市公司占比较低,A股与香港股票市场一体化程度较低且未见提高趋势。为提高股票市场一体化水平,本文基于价差极值服从广义帕累托分布(Generalized Pareto Distribution,GPD)的VaR模型构造了无套利区间的上下界,提出A+H交叉上市公司A股和H股套利交易策略,实证结果表明该策略能够获得显著的正收益。本文为市场一体化研究提供经验证据并为通过套利交易促进市场一体化提供解决方案,为深港通推出起到借鉴作用。

本文引用格式

闫红蕾, 赵胜民 . 沪港通能否促进A股与香港股票市场一体化[J]. 中国管理科学, 2016 , 24(11) : 1 -10 . DOI: 10.16381/j.cnki.issn1003-207x.2016.11.001

Abstract

Shanghai-Hong Kong Stock Connect is a cross-boundary investment channel under which investors in each market are able to trade shares on the other market using their local brokers and clearing houses. After the successful launching of the Shanghai-Hong Kong Stock Connect program in 2014, it is expected Shenzhen-Hong Kong Stock Connect program will be launched in 2016 according to Government Work Report 2015 and 2016. Does Shanghai-Hong Kong Stock Connect enhance stock market integration between Hong Kong and Mainland China? What predictions does it have on the launch of the Shenzhen-Hong Kong Stock Connect and How to promote stock market integration between Hong Kong and Mainland China? Differ from previous research, the stock market segmentation and integration is studied from a micro perspective focusing on the dynamics of the cross listed companies' A and H shares' prices. Under the assumption of efficient market, arbitrage will eliminate unreasonable gaps thus the stock prices (or return) of identical companies are apt to converge. If not, arbitrage opportunities arise and arbitrage capitalizes on unreasonable gaps while eliminate them and provide liquidity. The daily close prices of all together 84 cross listed companies from 2014 April, 10th to 2016 March, 25th are collected as our sample and the H shares' prices are adjusted to RMB prices by the exchange rate of identical day. The evolvement of price discrepancy between the cross listed A and H shares is first studied to analyze the impact of Shanghai-Hong Kong stock connect on market integration with application of transition model and log t test. And then arbitrage strategy between cross listed A and H shares is proposed to improve stock market integration by constructing arbitrage free interval with application of value at risk (VaR) model based on the assumption that gaps follow generalized Pareto distribution (GPD) and test its profitability.Empirical result shows that convergence between the cross listed A and H shares vary among individual companies and time, only 7 pairs of A and H shares of identical firm converge across the whole sample period, moreover there is no sign of uptrend as the number declines from 24 in 2014 to 8 in 2016 Q1. Therefore the integration level is unsatisfactory and Shanghai-Hong Kong Stock Connect has not fully functioned. However, arbitrage can contribute to market integration and the strategy produces significant average return of 3.64% for one week and 6.59% for two weeks. Out of sample test verifies the aforementioned findings and shows the strategy is effective and profitable. In this paper the evolvement of the Shanghai Hong Kong Stock Connect's policy effect is systematically studied. Besides, feasible strategy by arbitrage between cross listed stocks which facilitates market participants' spontaneous trading against unreasonable gaps as a solution of market segmentation is proposed. And our research provides enlightenment and empirical reference for Shenzhen-Hong Kong Stock Connect.

参考文献

[1] Stulz R, Wasserfallen W, Foreign equity investment restrictions and shareholder wealth maximization: Theory and evidence[J]. Review of Financial Studies, 1995, 8(4):1019-1057.

[2] Grossman S, Stiglitz J. On the impossibility of informationally efficient markets[J]. American Economic Review, 1980, 70(3):393-408.

[3] Chakravarty S, Sarkar A, Wu Lifan. Information asymmetry, market segmentation and the pricing of cross-listed shares: Theory and evidence from Chinese A and B shares[J]. Journal of International Financial Markets, Institutions and Money, 1998, 8(3-4): 325-356.

[4] Chan K, Menkveld A, Yang Zhishu. Information asymmetry and asset prices: Evidence from the China foreign share discount[J]. Journal of Finance, 2008, 63(1):159-196.

[5] Bailey W, Jagtiani J, Foreign ownership restrictions and stock prices in the Thai capital market[J]. Journal of Financial Economics, 1994, 36 (1): 57-87.

[6] Wang S S, Jiang Li. Location of trade, ownership restrictions and market illiquidity: Examining Chinese A and H shares[J]. Journal of Banking and Finance, 2004, 28(6): 1273-1297.

[7] Geert B, Campbell H, Christian L. Liquidity and expected returns: Lessons from emerging markets[J]. Review of Financial Studies, 2007, 20(6):1783-1831.

[8] Mitchell M, Pulvino T, Stafford, E. Limited arbitrage in equity markets[J].The Journal of Finance, 2002, 57(2): 551-584.

[9] Bris A, Goetzmann W N, Zhu Ning. Efficiency and the bear: Short sales and markets around the world[J].The Journal of Finance, 2007, 62(3):1029-1079.

[10] Gagnon L, Karolyi A. Multi-market trading and arbitrage[J]. Journal of Financial Economics, 2010, 97(1): 53-80.

[11] 刘荣茂,刘恒昕. 沪港通对沪市股票市场有效性的影响[J]. 经济与管理研究,2015,36(8):54-62.

[12] 杨瑞杰,张向丽. 沪港通对大陆、香港股票市场波动溢出的影响研究—基于沪深300指数、恒生指数高频数据[J]. 金融经济学研究,2015,30(6):49-59.

[13] 陈学胜,覃家琦. 交叉上市股票价格发现能力差异及交易信息含量测度[J].中国管理科学,2013,21(2):9-16.

[14] 游家兴,郑挺国. 中国与世界金融市场从分割走向整合—基于DCC-MGARCH模型的检验[J]. 数量经济技术经济研究,2009,12:96-108.

[15] 郭彦峰,黄登仕,魏宇,等. A+H交叉上市股票间信息传递的不对称性研究[J]. 中国管理科学,2010,18(3):10-16.

[16] 张信东,赵芳. 沪、深股票市场与香港股票市场的溢出效应—基于发布港股直通车方案前后的比较分析[J]. 南开管理评论,2009,12(4):99-106.

[17] 仪垂林,张翠玉. 次贷危机前后中国内地与亚洲主要股票市场联动性分析[J]. 产业经济研究,2010,(5):79-86.

[18] 李晓广,张岩贵. 我国股票市场与国际市场的联动性研究—对次贷危机时期样本的分析[J]. 国际金融研究,2008,(11):75-80.

[19] 曾志坚,徐迪,谢赤. 金融危机影响下证券市场联动效应研究[J]. 管理评论, 2009,21(2): 33-39.

[20] 吴吉林,操君. 中国A、B、H股间市场一体化进程研究—基于SKEWED-T-GJR-COPULA方法的实证检验[J]. 南方经济,2011,(5):43-53.

[21] 何光辉,杨咸月,陈诗一.入世以来中国证券市场动态国际一体化研究[J]. 经济研究,2012,(10):82-96.

[22] 李红权,洪永淼,汪寿阳. 我国A股市场与美股、港股的互动关系研究:基于信息溢出视角[J]. 经济研究,2011,(8):15-25.

[23] 鲁旭,赵迎迎. 沪深港股市动态联动性研究—基于三元VAR-GJR-GARCH-DCC的新证据[J]. 经济评论,2012,(1):97-107.

[24] 易荣华,鞠瑾,刘家鹏. 基于交叉上市股票的市场估值效率测度与估值模式分析[J]. 中国管理科学,2016,24(1):30-37.

[25] 陈学胜,周爱民. 交叉上市股票价格发现及贡献差异的横截面分析[J]. 中国管理科学,2009,17(2):21-28.

[26] Grammig J, Melvin M, Schlag C. Internationally cross-listed stock prices during overlapping trading hours: price discovery and exchange rate effects[J]. Journal of Empirical Finance, 2005, 12(1):139-164.

[27] 胡伦超,余乐安,汤铃. 融资融券背景下证券配对交易策略研究—基于协整和距离的两阶段方法[J]. 中国管理科学,2016,24(4):1-9.

[28] Phillips P C B, Sul D. Transition modeling and econometric convergence tests[J]. Econometrica, 2007,75(6): 1771-1855.

[29] 赵胜民,闫红蕾. 内地与香港股票市场的一体化进程研究[J]. 中国经济问题, 2016, (1):124-135.

[30] Sheleifer A. Inefficienct markets: An introduction to behavioral finance[J].Journal of Institutional and Thearetical Economics,2002,158(2):369-373.

[31] De Jong A, Rosenthal L, Van Dijk M A. The risk and return of arbitrage in dual-listed companies[J]. Review of Finance, 2009, 13(3): 495-520.

[32] Schultz P, Shive S. Mispricing of dual-class shares: Profit opportunities, arbitrage, and trading[J].Journal of Financial Economics,2010,98(3):524-549.

[33] 黄金波,李仲飞,周鸿涛. 期望效用视角下的风险对冲效率[J]. 中国管理科学,2016,24(3):9-17.

[34] Embrechts P, Kluppelberg C, Mikosch T. Modeling extremal events for insurance and finance[M]. 1997, Berlin:Springer.
文章导航

/