主管:中国科学院
主办:中国优选法统筹法与经济数学研究会
   中国科学院科技战略咨询研究院
论文

三元效率区间下决策单元的全局绩效评价

展开
  • 1. 山西大学经济与管理学院, 山西 太原 030006;
    2. 山西大学科学评价研究中心, 山西 太原 030006
范建平(1975-),男(汉族),山西武乡人,山西大学经济与管理学院,博士,副院长,研究方向:预测、评价与决策,E-mail:fjp@sxu.edu.cn.

收稿日期: 2013-12-01

  修回日期: 2014-12-25

  网络出版日期: 2016-02-25

Overall Performance Evaluation for DMUs with Ternary Efficiency Interval

Expand
  • 1. School of Economics and Management, Shanxi University, Taiyuan 030006, China;
    2. Research Center for Science Evaluation, Shanxi University, Taiyuan 030006, China

Received date: 2013-12-01

  Revised date: 2014-12-25

  Online published: 2016-02-25

摘要

针对现实生活中投入产出数据的不确定性,许多学者提出从乐观和悲观角度计算决策单元的效率区间,但每个效率区间的上、下界值都是决策单元表现的两种极端情况。本文通过引入心态指标衡量决策者的偏好,获得了一个最有可能的效率值,它与上界值、下界值共同组成了三元效率区间。然后改进了两级排序方法:提出了三元有向距离指数,为所有决策单元获得全序化结果。本文引用前人文中的数例验证了该方法是一种更为精确、可全序化的评价、决策方法,可广泛应用于效率测评中。

本文引用格式

范建平, 陈静, 吴美琴, 田璇 . 三元效率区间下决策单元的全局绩效评价[J]. 中国管理科学, 2016 , 24(2) : 153 -161 . DOI: 10.16381/j.cnki.issn1003-207x.2016.02.019

Abstract

To deal with the uncertainty of the data for input and/or output in the real world, many experts presented efficiency interval to evaluate the performance for each DMU from optimistic and pessimistic views. Undeniably, the lower and upper bound of the efficiency interval are two extremes of each DMU performance. In this paper, the preference of the decision makers are considered by introducing the attitude index to get the most probable efficiency value, which with the lower and upper bound constitutes the ternary efficiency interval. Then ternary directional distance index is proposed, improving the two-grade ranking method, to get a full ranking for all DMUs. The illustrative example shows this method is more precise and widely used in efficiency evaluation and decision-making field.the effectiveness and practicability of the proposed method.

参考文献

[1] Charnes A, Cooper W W, Rhodes E. Measuring the efficiency of decision making units[J]. European journal of operational research, 1978, 2(6):429-444.

[2] 王赫一,张屹两.两阶段DEA前沿面投影问题研究-兼对我国上市银行运营绩效进行评价[J].中国管理科学,2012,20(2):114-120.

[3] Yang Xiaopeng, Morita H. Efficiency improvement from multiple perspectives:An application to Japanese banking Industry[J]. Omega, 2012, 41(3):501-509.

[4] Azizi H, Wang Yingming. Improved DEA models for measuring interval efficiencies of decision-making units[J]. Measurement, 2012, 46(3):1325-1332.

[5] 汪克亮,杨宝臣,杨力.中国省际能源利用的环境效率测度模型与实践研究[J].系统工程,2011,29(1):8-15

[6] Azizi H. A note on data envelopment analysis with missing values:an interval DEA approach[J]. The International Journal of Advanced Manufacturing Technology, 2013,66(9):1817-1823.

[7] 赵萌.中国制造业生产效率评价:基于并联决策单元的动态DEA方法[J].系统工程理论与实践,2012,32(6):1251-1260.

[8] 杜娟,霍佳震.基于数据包络分析的中国城市创新能力评价[J].中国管理科学,2014,22(6):85-93.

[9] Cook W D, Zhu J. Within-group common weights in DEA:An analysis of power plant efficiency[J]. European Journal of Operational Research, 2007, 178(1):207-216.

[10] Banker R D, Charnes A, Cooper W W. Some models for estimating technical and scale inefficiencies in data envelopment analysis[J]. Management science, 1984, 30(9):1078-1092.

[11] Parkan C, Wang Yingming. The worst possible relative efficiency analysis based on inefficient production frontier. Working Paper, Department of Management Sciences, City University of Hong Kong, 2000.

[12] Doyle J R, Green R H, Cook W D. Upper and lower bound evaluation of multiattribute objects:Comparison models using linear programming[J]. Organizational Behavior and Human Decision Processes, 1995, 64(3):261-273.

[13] Entani T, Maeda Y, Tanaka H. Dual models of interval DEA and its extension to interval data[J]. European Journal of Operational Research, 2002, 136(1):32-45.

[14] Wang Yingming, Yang Jianbo. Measuring the performances of decision-making units using interval efficiencies[J]. Journal of Computational and Applied Mathematics, 2007, 198(1):253-267.

[15] Azizi H, Wang Yingming. Improved DEA models for measuring interval efficiencies of decision-making units[J]. Measurement, 2013, 46(3):1325-1332.

[16] Azizi H, Jahed R. Improved data envelopment analysis models for evaluating interval efficiencies of decision-making units[J]. Computers & Industrial Engineering, 2011, 61(3):897-901.

[17] Wang Yingming, Chin K S, Yang Jianbo. Measuring the performances of decision-making units using geometric average efficiency[J]. Journal of the Operational Research Society, 2006, 58(7):929-937.

[18] Amirteimoori A. DEA efficiency analysis:Efficient and anti-efficient frontier[J]. Applied mathematics and Computation, 2007, 186(1):10-16.

[19] 陆志鹏,王洁方,刘思峰,等.区间DEA模型求解算法及其在项目投资效率评价中的应用[J].中国管理科学,2009,17(4):165-169.

[20] Wu Jie, Sun Jiasen, Song Malin, et al. A ranking method for DMUs with interval data based on dea cross-efficiency evaluation and topsis[J]. Journal of Systems Science and Systems Engineering, 2013,22(2):191-201.

[21] Wang Yingming, Greatbanks R, Yang Jianbo. Interval efficiency assessment using data envelopment analysis[J]. Fuzzy sets and Systems, 2005, 153(3):347-370.

[22] Azizi H, Ajirlu H G. Measurement of the worst practice of decision-making units in the presence of non-discretionary factors and imprecise data[J]. Applied Mathematical Modelling, 2011, 35(9):4149-4156.

[23] 胡启洲,张卫华. 区间数理论研究及其应用[M]. 北京:科学出版社. 2010.

[24] Qian Yuhua, Liang Jiye, Dang Chuangyin. Interval ordered information systems[J]. Computers & Mathematics with Applications, 2008, 56(8):1994-2009.

[25] 宋鹏. 基于序化机理的稳健型股票价值投资研究. 太原:山西大学, 2012.

[26] Wang Yingming, Luo Ying, Liang Liang. Fuzzy data envelopment analysis based upon fuzzy arithmetic with an application to performance assessment of manufacturing enterprises[J]. Expert systems with applications, 2009, 36(3):5205-5211.
文章导航

/