目前越来越多的数据挖掘方法被用于风险预警中,决策树、支持向量机、神经网络、Logistic回归等方法在风险预警中都表现出了较好的特性和预警效果,但是不同数据挖掘分类方法得到的结果不同,往往导致预警结果的不一致,因此也会存在一定风险。本文引入信息融合技术对不同数据挖掘分类方法得到的结果进行融合处理得到最优的结果,解决了不同数据挖掘方法得到的结果不一致问题。文章在SVM和Logistic回归的数据挖掘模型基础上建立基于信息融合的公司财务预警模型,提高了财务预警准确率,并且保留了原数据挖掘方法在分类预测上的优势。在实证研究中,论文选取了中国制造业的上市公司作为研究对象,在SVM和Logistic回归两种数据挖掘模型的基础上利用信息融合方法建立了财务预警模型,实证结果表明,基于信息融合的数据挖掘方法的预测准确率要高于单独的SVM和Logistic回归两种方法。
Different data mining methods for classification can produce different results. However, "one time" data mining process cannot often obtain a well support decision, so we introduce information fusion technique to fuse the different results to gain an optimal solution. In this paper, information fusion technique is used to build a finance early-warning model based on data mining methods such as SVM and Logistic model, which can integrate the respective strengths from different data mining methods to improve the prediction accuracy rate, it fuses the different data mining results to gain the prediction results for reliable decision. The real dataset of Chinese listed manufacturing companies is selected to predict the finance risk with information fusion technique based on SVM and Logistic model, and a higher prediction accuracy than those of the two methods respectively is obtained.
[1] Altman E I, Hanldeman R G, Narayanan P. ZETA analysis:A new model to identify bankrupty risk of corporations[J].Journal of Banking and Finance, 1977,1(1):29-54.
[2] Ohlson J A. Financial ratios and the probabilistic prediction of bankruptcy[J].Journal of Accounting Research,1980,18(19):109-131.
[3] Odom M, Sharda R. A neural network model for bankruptcy prediction[J]. Neural Networks in Finance and Investing,1993,2:177-186.
[4] 杨淑娥,王乐平.基于BP神经网络和面板数据的上市公司财务危机预警[J].系统工程理论与实践,2007,2(6):61-67.
[5] 姚靠华,蒋艳辉.基于决策树的财务预警[J].系统工程,2005,23(7):102-106.
[6] Gestel T, Baesens B, Suykens J, et al. Bayesian kernel based classification for financial distress detection[J].European Journal of Operational Research,2006, 172(3):979-1003.
[7] Shin K, Lee T, Kim H. An application of support vector machine in bankruptcy prediction model[J]. Expert Systems with Applications,2005,28(l):127-135.
[8] 杨毓,蒙肖莲.用支持向量机(SVM)构建企业破产预测模型[J].金融研究,2006,(10):65-75.
[9] Koyuncugil A S, Ozgulba N, Financial early warning system model and data mining application for risk detection[J]. Expert Systems with Applications, 2012,39(6):6238-6253.
[10] Mina J H, Lee Y C. Bankruptcy prediction using support vector machine with optimal choice of kernel function parameters[J]. Expert Systems with Applications,2005,28(4):603-614.
[11] 杨淑娥,黄礼.基于BP神经网络的上市公司财务预警模型[J].系统工程理论与实践,2005,25(1):12-18.
[12] 康晓玲,张懿.企业财务预警模型研究-基于中报数据与可持续增长模型的重构[J].科研管理,2009,30(1):45-64.
[13] 谭久均.财务指标与违约距离相融合的上市公司财务预警模型[J].系统工程,2005,23(9):111-117.
[14] 孙洁,李辉,韩建光.基于滚动时间窗口支持向量机的财务困境预测动态建模[J].管理工程学报,2010,24(4):174-180.
[15] 韩建光,惠晓峰,孙洁. 基于多特征子集组合分类器的企业财务困境预测[J]. 系统管理学报,2010,19(4):420-427.
[16] 刘遵雄,郑淑娟,秦宾,等. L1正则化Logistic回归在财务预警中的应用[J].经济数学,2012(2):106-110.
[17] 周宗放,肖珉.我国企业集团上市公司财务预警与信用风险评估研究[D].四川:电子科技大学,2012.
[18] 孟杰.随机森林模型在财务失败预警中的应用[J].统计与决策,2014,(4):179-181.
[19] 辛金国,关建清. 基于数据挖掘民营上市公司绩效评价研究探索[J].中国管理科学,2012,20(57):114-119.
[20] 杨海珍,荆中博,魏先华,等. 银行破产的财务因素分析:金融危机冲击下美国银行业的实证[J].中国管理科学,2012,20(1):71-77.
[21] 文柯. 基于Logistic的上市公司产融结合风隐预警模型研究[J].中国管理科学,2012,20(S2):346-350.