多回收商相互竞争是当前我国众多闭环供应链的典型特征。为了有效协调竞争性的多回收商决策,再制造企业需要同时提供两种以上的回收契约,以有效识别不同类型的回收商。闭环供应链中多个回收商彼此相互竞争,从而对闭环长期协调产生重要的影响。这与当前常见的闭环供应链理论研究中的单一链条结构和单一回收契约的理论假设有明显的不同。新的模型中,回收商的回收量与自身回收价格成正比,与竞争对手回收价格成反比。回收商在进行回收价格决策时,同时考虑再制造商的收购价格、自身的成本、诸多竞争对手的反应和不同回收契约对自身的影响,追求自身利益的最大化。采用多Agent模型,构建了一个单再制造商——多回收商组成的闭环供应链模型。在该模型中,回收商彼此相互竞争,同时面临简单价格契约和数量契约两种不同契约,且对回收成本进行不断优化。根据对某企业的实际调研,对模型参数进行了赋值,并通过数值模拟,得出以下结论:双契约选择较单契约更加有利于闭环供应链协调;多回收商竞争时,不存在一个稳定的收敛价格;回收成本下降对闭环供应链长期优化有重要的价值。本文结论更好解释了我国闭环供应链实践的现状,拓展了理论研究范围,为闭环供应链参与方的决策提供了理论支持,且便于再制造商实践。
The competition of recyclers is a typical characteristic of many closed-loop supplies in chain. In order to effectively coordinate competitive recyclers' decision-making, remanufacturing enterprises need to provide two or more recycling contracts at the same time to effectively identify the different types of recyclers. A model of closed loop supply chain comprised by a single manufacturer and many recyclers with Multi-Agent model is constructed. In this model, recyclers compete with each other, face two different contracts at the same time: the simple price contract and quantity contract and continuously optimize their recycling cost. Through the numerical simulation of the model, this paper draws the following conclusions: double contracts than a single contract is more advantageous to the closed-loop supply chain coordination; there is not a stable convergence prices when many recyclers competing; recycling costs down to closed-loop supply chain optimization has important value for long-time optimization. The conclusion of this paper is better explain to the situation of closed-loop supply chain practice in our country, and this paper expands the scope of theoretical research and provides the theory support for the closed-loop supply chain participants in the decision-making at the same time the method is easy to remanufacture.
[1] 吴忠和, 陈宏, 赵千, 等. 两零售商竞争下多因素同时扰动的供应链协调研究[J]. 中国管理科学, 2012,20(2): 62-67.
[2] 高鹏, 谢忠秋, 谢印成. 不对称信息下零售商主导的闭环供应链协作机制[J]. 工业工程, 2013, 16(1): 79-85.
[3] 张克勇, 周国华. 不确定需求下闭环供应链定价模型研究[J]. 管理学报, 2009,6(1): 45-50.
[4] Xiao Tiaojun, Shi Kuiran, Yang Danqin. Coordination of a supply chain with consumer return under demand uncertainty[J]. International Journal of Production Economics, 2010, 124(1): 171-180.
[5] Debo L, Toktay B, Van Wassenhove L. Market segmentation and technology selection for remanufacturable products [J]. Management Science, 2005,51(8): 1193-1205.
[6] Mukhopadhyay S K, Setoputro R. Optimal return policy and modular design for build-to-order products [J]. Journal of Operations Management, 2004, 23(11): 496-506.
[7] Mukhopadhyay S K, Setoputro R. Reverse logistics in e-business optimal price and return policy [J].International Journal of Physical Distribution & Logistics Management, 2004,34(1):70-88.
[8] 郑克俊. 存在价格差异的闭环供应链定价策略及契约协调[J].运筹与管理, 2012,21(1):118-123.
[9] 孙浩, 达庆利. 考虑渠道权力结构和风险规避的闭环供应链差异定价机制研究[J]. 工业技术经济, 2013,(3): 26-33.
[10] 梁云, 雷红, 左小德. 有限产能下单向替代的闭环供应链定价模型研究[J]. 管理工程学报, 2013,27(1): 114-120.
[11] 颜荣芳, 程永宏, 王彩霞. 再制造闭环供应链最优差别定价模型[J]. 中国管理科学, 2013, 21(1): 90-97.
[12] Chen Jing, Bell P C. Coordinating a decentralized supply chain with customer returns and price-dependent stochastic demand using a buyback policy[J]. European Journal of Operational Research,2011,212(2): 293-300.
[13] 李新然, 胡鹏旭, 牟宗玉. 第三方回收闭环供应链协调应对突发事件研究[J]. 科研管理, 2013,34 (1): 99-107.
[14] 王旭, 王银河. 需求和回收扰动的闭环供应链定价和协调[J]. 计算机集成制造系统, 2013, 19(3): 624-630.
[15] 马卫民, 赵璋. 以旧换新补贴对不同模式闭环供应链的影响[J]. 系统工程理论与实践, 2013,32(9):1938-1944.
[16] 易余胤, 袁江. 渠道冲突环境下的闭环供应链协调定价模型[J]. 管理科学学报, 2012, 15 (1): 54-65.
[17] 易余胤. 具竞争零售商的再制造闭环供应链模型研究[J]. 管理科学学报, 2009, 12(6):45-54.
[18] Arnaro A C S, Barbosa-Povoa A P F D. The effect of uncertainty on the optimal closed-loop supply chain planning under different partnership structure[J]. Computers and Chemical Engineering, 2009,33: 2144-2158.